
Agile Estimating and Planning

Mike Cohn - background

© Mountain Goat Software, LLC

1

2

© Mountain Goat Software, LLC

What’s a good plan?

• A good plan is one that supports reliable
decision-making

• Will go from

• We’ll be done in the fourth quarter

• We’ll be done in November

• We’ll be done November 7th

© Mountain Goat Software, LLC

What makes planning agile?

3

4

© Mountain Goat Software, LLC

Sprint

An agile approach to planning
Release

Feedback

Feedback

© Mountain Goat Software, LLC

Agenda

5

6

© Mountain Goat Software, LLC

© Mountain Goat Software, LLC

Which we’re talking about

Sp
ri

nt
 2

Sp
ri

nt
 1

Product Backlog Sprint Backlog

7

8

© Mountain Goat Software, LLC

How long will it take...

• ...to read the latest Harry Potter book?

• ...to drive to Seattle?

© Mountain Goat Software, LLC

Estimate size; derive duration

9

10

© Mountain Goat Software, LLC

• Traditional and agile measure size differently

Traditional
measures
of size

Measures of size

Lines of Code
Function Points

Agile
measures
of size

Story points
Ideal days

© Mountain Goat Software, LLC

Story points
• The “bigness” of a task

• Influenced by

• How hard it is

• How much of it there is

• Relative values are what is important:

• A login screen is a 2.

• A search feature is an 8.

• Points are unit-less

5

11

12

© Mountain Goat Software, LLC

Dog points

Assign “dog

points” to the

following breeds

© Mountain Goat Software, LLC

13

14

© Mountain Goat Software, LLC

Ideal time

• How long something would take if

• it’s all you worked on

• you had no interruptions

• and everything you need is available

• The ideal time of a football game is 60 minutes

• Four 15-minute quarters

• The elapsed time is much longer (3+ hours?)

© Mountain Goat Software, LLC

Elapsed time vs. ideal time
Ideally

But instead...

15

16

© Mountain Goat Software, LLC

Ideal time vs. elapsed time

• It’s easier to estimate in ideal time

• It’s too hard to estimate directly in elapsed
time

• Need to consider all the factors that affect
elapsed time at the same time you’re estimating

© Mountain Goat Software, LLC

Specialization

• First, don’t worry about it too much

• We’re usually better off with fairly rapid, imprecise
estimates than spending more time

• Second

• Just add up the components and report one total
estimate of ideal days

= 8

= 8

= 8

17

18

© Mountain Goat Software, LLC

The great debate

Which do you prefer:

© Mountain Goat Software, LLC

Comparing the approaches
• Story points help drive cross-functional behavior

• Story point estimates do not decay

• Story points are a pure measure of size

• Estimating in story points is typically faster

• My ideal days cannot be added to your ideal days

• Ideal days are easier to explain outside the team

• Ideal days are easier to estimate at first

• Ideal days can force companies to confront time
wasting activities

19

20

© Mountain Goat Software, LLC

What I usually do

© Mountain Goat Software, LLC

Three levels of planning...

. . .

21

22

© Mountain Goat Software, LLC

...three levels of precision
Sp

ri
nt

 2
Sp

ri
nt

 1

Product Backlog Sprint Backlog

© Mountain Goat Software, LLC

23

24

© Mountain Goat Software, LLC

Estimate by analogy

• Comparing a user story to others

• “This story is like that story, so its estimate is
what that story’s estimate was.”

• Don’t use a single gold standard

• Triangulate instead

• Compare the story being estimated to multiple
other stories

© Mountain Goat Software, LLC

Triangulation
• Confirm estimates by comparing the story to

multiple other stories.

• Group like-sized stories on table or whiteboard

Story 3

25

26

© Mountain Goat Software, LLC

Disaggregation
• Breaking a big story into smaller stories or tasks

• You know how long the smaller tasks take

• So, disaggregating to something you know lets you
estimate something bigger you don’t know

• Sometimes very useful

• But disaggregating too far causes problems

• Forgotten tasks

• Summing lots of small errors can be big number

© Mountain Goat Software, LLC

How much effort?

• A little efforts helps a lot

• A lot of effort only helps a little more

Effort

A
c
c
u

ra
c
y

27

28

© Mountain Goat Software, LLC

Use the right units

• Can you distinguish a 1-point story from a 2?

• Can you distinguish a 17 from an 18?

• Use units that make sense, such as

• 1, 2, 3, 5, 8, 13

• 1, 2, 4, 8

• Stay mostly in a 1-10 range

© Mountain Goat Software, LLC

Planning poker
• An iterative approach to estimating

• Steps

• Each estimator is given a deck of cards, each card has a valid
estimate written on it

• Customer/Product owner reads a story and it’s discussed
briefly

• Each estimator selects a card that’s his or her estimate

• Cards are turned over so all can see them

• Discuss differences (especially outliers)

• Re-estimate until estimates converge

29

30

© Mountain Goat Software, LLC

Planning poker - an example

20138532
1

© Mountain Goat Software, LLC

Estimate these

31

32

© Mountain Goat Software, LLC

Why planning poker works

• Emphasizes relative estimating

• Focuses most estimates within an approximate
one order of magnitude

• Everyone’s opinion is heard

• Estimators are required to justify estimates

• It’s quick

• It’s fun

© Mountain Goat Software, LLC

33

34

© Mountain Goat Software, LLC

Sp
ri

nt
 2

Sp
ri

nt
 1

Product Backlog Sprint Backlog

© Mountain Goat Software, LLC

Two approaches

• Velocity-driven sprint planning

• “We finished 15 story points last time, let’s plan
on 15 story points this time.”

• Commitment-driven sprint planning

35

36

© Mountain Goat Software, LLC

Commitment-driven sprint planning

• Discuss the highest priority item on the product
backlog

• Decompose it into tasks

• Estimate each task

• Whole team estimates each task

• Ask ourselves, “Can we commit to this?”

• If yes, see if we can add another backlog item

• If not, remove this item but see if we can add another
smaller one

© Mountain Goat Software, LLC

Estimate availability

37

38

© Mountain Goat Software, LLC

It looks something like this

© Mountain Goat Software, LLC

time

1

2

time

39

40

© Mountain Goat Software, LLC

© Mountain Goat Software, LLC

• Three ways to come up initial velocity

Initial velocity

• Express velocity as a range that matches your
uncertainty in it

41

42

© Mountain Goat Software, LLC

Forecasting velocity

• Just like commitment-driven sprint planning

• Estimate available hours for the sprint

• Pick a story, break into tasks, estimate each
task

• Repeat until full

• Ideally, plan more than one sprint

© Mountain Goat Software, LLC

43

44

© Mountain Goat Software, LLC

© Mountain Goat Software, LLC

Release planning

Release Plan

45

46

© Mountain Goat Software, LLC

An example with velocity=14

© Mountain Goat Software, LLC

Updating the release plan

• Revisit the release plan at the end of every
sprint

• Update it based on:

• Current understanding of velocity

• Current prioritization of the product backlog

• This should be a very short and sweet process

47

48

© Mountain Goat Software, LLC

Changing the release plan

© Mountain Goat Software, LLC

Use actual velocities once
they’re available

0

10

20

30

40

1 2 3 4 5 6 7 8 9
Sprints

Mean (Worst 3) = 28

Mean (Last 8) = 33
Last Observation = 36

49

50

© Mountain Goat Software, LLC

Extrapolate from velocity

At our long-term average we’ll finish here

At our slowest velocity we’ll finish here

At current velocity we’ll finish here

© Mountain Goat Software, LLC

Updating the release plan

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Sprints

Ve
lo

ci
ty Mean of worst 3

Most recent

Long-term average

=

=

= 15

51

52

© Mountain Goat Software, LLC

Update this release plan
Running
Total Estimate Story

5 5 As a user, I can...

10 5 As a user, I can...

23 13 As a user, I can...

31 8 As a user, I can...

51 20 As a user, I can...

59 8 As a user, I can...

64 5 As a user, I can...

72 8 As a user, I can...

77 5 As a user, I can...

85 8 As a user, I can...

90 5 As a user, I can...

93 3 As a user, I can...

6 worst 3 = ____ 6 average of last 8 = ____ 6 most recent = ____

© Mountain Goat Software, LLC

Upcoming public classes

53

54

© Mountain Goat Software, LLC

Mike Cohn contact info

55

49

Chapter 6

Techniques for Estimating

“Prediction is very difficult,
especially about the future.”

—Niels Bohr, Danish physicist

The more effort we put into something, the better the result. Right? Perhaps, but
we often need to expend just a fraction of that effort to get adequate results. For
example, my car is dirty, and I need to wash it. If I wash it myself, I’ll spend about
an hour on it, which will be enough to wash the exterior, vacuum the interior,
and clean the windows. For a one-hour investment, I’ll have a fairly clean car.

On the other hand, I could call a car-detailing service and have them wash
my car. They’ll spend four hours on it. They do everything I do but much more
thoroughly. They’ll also wax the car, shine the dashboard, and so on. I watched
one time, and they used tiny cotton swabs to clean out the little places too small
to reach with a rag. That’s a lot of effort for slightly better results. For me, the
law of diminishing returns kicks in well before I’ll use a cotton swab on my car.

We want to remain aware, too, of the diminishing return on time spent esti-
mating. We can often spend a little time thinking about an estimate and come up
with a number that is nearly as good as if we had spent a lot of time thinking
about it. The relationship between estimate accuracy and effort is shown in
Figure 6.1. The curve in this graph is placed according to my experience, corrob-
orated in discussions with others. It is not based on empirical measurement.

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

50 | Chapter 6 Techniques for Estimating

Figure 6.1 Additional estimation effort yields very little value beyond a certain point.

To understand this relationship better, suppose you decide to estimate how
many cookies I’ve eaten in the past year. You could put no effort into the esti-
mate and just take a random guess. Mapping this onto Figure 6.1, you’d be com-
pletely to the left on the effort axis, and your estimate would be unlikely to be
accurate. You could move to the right on the effort axis by spending a half-hour
or so researching national averages for cookie consumption. This would improve
your accuracy over the pure guess. If you felt the need to be more accurate, you
could do some research—call my friends and family, subpoena my past cookie
orders from the Girl Scouts, and so on. You could even follow me around for a
day—or, better yet, a month—and then extrapolate your observations into how
many cookies you think I eat in a year.

Vary the effort you put into estimating according to purpose of the estimate.
If you are trying to decide whether or not to send me a box of cookies as a gift,
you do not need a very accurate estimate. If the estimate will be used to make a
software build versus buy decision, it is likely enough to determine that the
project will take six to twelve months. It may be unnecessary to refine that to the
point where you can say it will take seven or eight months.

Look carefully at Figure 6.1, and notice a couple of things. First, no matter
how much effort is invested, the estimate is never at the top of the accuracy axis.
No matter how much effort you put into an estimate, an estimate is still an esti-
mate. No amount of additional effort will make an estimate perfect. Next, notice
how little effort is required to move the accuracy up dramatically from the base-
line. As drawn in Figure 6.1, about 10% of the effort gets 50% of the potential ac-
curacy. Finally, notice that eventually, the accuracy of the estimate declines. It is

50
A

cc
ur

ac
y

100

Effort

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

Estimates Are Shared | 51

possible to put too much effort into estimating, with the result being a less accu-
rate estimate.

When starting to plan a project, it is useful to think about where on the
curve of Figure 6.1 we wish to be. Many projects try to be very high up the accu-
racy axis, forcing teams far out on the effort axis even though the benefits dimin-
ish rapidly. Often, this is the result of the simplistic view that we can lock down
budgets, schedules, and scope and that project success equates to on-time, on-
budget delivery of an up-front, precisely planned set of features. This type of
thinking leads to a desire for extensive signed requirements documents, lots of
up-front analysis work, and detailed project plans that show every task a team
can think of. Then, even after all this additional up-front work, the estimates still
aren’t perfect.

Agile teams, however, choose to be closer to the left in a figure like
Figure 6.1. They acknowledge that we cannot eliminate uncertainty from esti-
mates, but they embrace the idea that small efforts are rewarded with big gains.
Even though they are less far up the accuracy/effort scale, agile teams can pro-
duce more reliable plans because they frequently deliver small increments of
fully working, tested, integrated code.

Estimates Are Shared
Estimates are not created by a single individual on the team. Agile teams do not
rely on a single expert to estimate. Despite well-known evidence that estimates
prepared by those who will do the work are better than estimates prepared by
anyone else (Lederer and Prasad 1992), estimates are best derived collaboratively
by the team, which includes those who will do the work. There are two reasons
for this.

First, on an agile project we tend not to know specifically who will perform a
given task. Yes, we may all suspect that the team’s database guru will be the one
to do the complex stored procedure task that has been identified. However,
there’s no guarantee that this will be the case. She may be busy when the time
comes, and someone else will work on it. So because anyone may work on any-
thing, it is important that everyone have input into the estimate.

Second, even though we may expect the database guru to do the work, oth-
ers may have something to say about her estimate. Suppose that the team’s data-
base guru, Kristy, estimates a particular user story as three ideal days. Someone
else on the project may not know enough to program the feature himself, but he
may know enough to say, “Kristy, you’re nuts; the last time you worked on a fea-
ture like that, it took a lot longer. I think you’re forgetting how hard it was last

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

52 | Chapter 6 Techniques for Estimating

time.” At that point Kristy may offer a good explanation of why it’s different this
time. However, more often than not in my experience, she will acknowledge that
she was indeed underestimating the feature.

The Estimation Scale
Studies have shown that we are best at estimating things that fall within one or-
der of magnitude (Miranda 2001; Saaty 1996). Within your town, you should be
able to estimate reasonably well the relative distances to things like the nearest
grocery store, the nearest restaurant, and the nearest library. The library may be
twice as far as the restaurant, for example. Your estimates will be far less accu-
rate if you are asked also to estimate the relative distance to the moon or a
neighboring country’s capital. Because we are best within a single order of mag-
nitude, we would like to have most of our estimates in such a range.

Two estimation scales I’ve had good success with are

◆ 1, 2, 3, 5, and 8

◆ 1, 2, 4, and 8

There’s a logic behind each of these sequences. The first is the Fibonacci se-
quence.1 I’ve found this to be a very useful estimation sequence because the gaps
in the sequence become appropriately larger as the numbers increase. A one-
point gap from 1 to 2 and from 2 to 3 seems appropriate, just as the gaps from 3
to 5 and from 5 to 8 do. The second sequence is spaced such that each number is
twice the number that precedes it. These nonlinear sequences work well because
they reflect the greater uncertainty associated with estimates for larger units of
work. Either sequence works well, although my slight personal preference is for
the first.

Each of these numbers should be thought of as a bucket into which items of
the appropriate size are poured. Rather than thinking of work as water being
poured into the buckets, think of the work as sand. If you are estimating using 1,
2, 3, 5, and 8, and have a story that you think is just the slightest bit bigger than
the other five-point stories you’ve estimated, it would be OK to put it into the
five-point bucket. A story you think is a 7, however, clearly would not fit in the
five-point bucket.

1. A number in the Fibonacci sequence is generated by taking the sum of the previous
two numbers.

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

User Stories, Epics, and Themes | 53

You may want to consider including 0 as a valid number within your estima-
tion range. Although it’s unlikely that a team will encounter many user stories
or features that truly take no work, including 0 is often useful. There are two rea-
sons for this. First, if we want to keep all features within a 10x range, assigning
nonzero values to tiny features will limit the size of largest features. Second, if
the work truly is closer to 0 than 1, the team may not want the completion of the
feature to contribute to its velocity calculations. If the team earns one point in
this iteration for something truly trivial, in the next iteration their velocity will
either drop by one or they’ll have to earn that point by doing work that may not
be as trivial.

If the team does elect to include 0 in their estimation scale, everyone in-
volved in the project (especially the product owner) needs to understand that

. I’ve never had the slightest problem explaining this to product own-
ers, who realize that a 0-point story is the equivalent of a free lunch. However,
they also realize there’s a limit to the number of free lunches they can get in a
single iteration. An alternative to using 0 is to group very small stories and esti-
mate them as a single unit.

Some teams prefer to work with larger numbers, such as 10, 20, 30, 50, and
100. This is fine, because these are also within a single order of magnitude. How-
ever, if you go with larger numbers, such as 10 to 100, I still recommend that
you pre-identify the numbers you will use within that range. Do not, for exam-
ple, allow one story to be estimated at 66 story points or ideal days and another
story to be estimated at 67. That is a false level of precision, and we cannot dis-
cern a 1.5% difference in size. It’s acceptable to have one-point differences be-
tween values such as 1, 2, and 3. As percentages, those differences are much
larger than between 66 and 67.

User Stories, Epics, and Themes
Although in general, we want to estimate user stories whose sizes are within one
order of magnitude, this cannot always be the case. If we are to estimate every-
thing within one order of magnitude, it would mean writing all stories at a fairly
fine-grained level. For features that we’re not sure we want (a preliminary cost
estimate is desired before too much investment is put into them) or for features
that may not happen in the near future, it is often desirable to write one much
larger user story. A large user story is sometimes called an epic.

Additionally, a set of related user stories may be combined (usually by a pa-
per clip if working with note cards) and treated as a single entity for either

13 0× 0≠

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

54 | Chapter 6 Techniques for Estimating

estimating or release planning. Such a set of user stories is referred to as a
theme. An epic, by its very size alone, is often a theme on its own.

By aggregating some stories into themes and writing some stories as epics, a
team is able to reduce the effort they’ll spend on estimating. However, it’s impor-
tant that they realize that estimates of themes and epics will be more uncertain
than estimates of the more specific, smaller user stories.

User stories that will be worked on in the near future (the next few itera-
tions) need to be small enough that they can be completed in a single iteration.
These items should be estimated within one order of magnitude. I use the se-
quence 1, 2, 3, 5, and 8 for this.

User stories or other items that are likely to be more distant than a few iter-
ations can be left as epics or themes. These items can be estimated in units be-
yond the 1 to 8 range I recommend. To accommodate estimating these larger
items I add 13, 20, 40, and 100 to my preferred sequence of 1, 2, 3, 5, and 8.

Deriving an Estimate
The three most common techniques for estimating are

◆ Expert opinion

◆ Analogy

◆ Disaggregation

Each of these techniques may be used on its own, but the techniques should
be combined for best results.

Expert Opinion
If you want to know how long something is likely to take, ask an expert. At least,
that’s one approach. In an expert opinion-based approach to estimating, an ex-
pert is asked how long something will take or how big it will be. The expert relies
on her intuition or gut feel and provides an estimate.

This approach is less useful on agile projects than on traditional projects. On
an agile project, estimates are assigned to user stories or other user-valued func-
tionality. Developing this functionality is likely to require a variety of skills nor-
mally performed by more than one person. This makes it difficult to find suitable
experts who can assess the effort across all disciplines. On a traditional project

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

Disaggregation | 55

for which estimates are associated with tasks, this is not as significant of a prob-
lem, because each task is likely performed by one person.

A nice benefit of estimating by expert opinion is that it usually doesn’t take
very long. Typically, a developer reads a user story, perhaps asks a clarifying
question or two, and then provides an estimate based on her intuition. There is
even evidence that says this type of estimating is more accurate than other, more
analytical approaches (Johnson et al. 2000).

Analogy
An alternative to expert opinion comes in the form of estimating by analogy,
which is what we’re doing when we say, “This story is a little bigger than that
story.” When estimating by analogy, the estimator compares the story being esti-
mated with one or more other stories. If the story is twice the size, it is given an
estimate twice as large. There is evidence that we are better at estimating rela-
tive size than we are at estimating absolute size (Lederer and Prasad 1998; Vici-
nanza et al. 1991).

When estimating this way, you do not compare all stories against a single
baseline or universal reference. Instead, you want to estimate each new story
against an assortment of those that have already been estimated. This is referred
to as triangulation. To triangulate, compare the story being estimated against a
couple of other stories. To decide if a story should be estimated at five story
points, see if it seems a little bigger than a story you estimated at three and a lit-
tle smaller than a story you estimated at eight.

Disaggregation
Disaggregation refers to splitting a story or feature into smaller, easier-to-esti-
mate pieces. If most of the user stories to be included in a project are in the
range of two to five days to develop, it will be very difficult to estimate a single
story that may be 100 days. Not only are large things notoriously more difficult
to estimate, but also in this case there will be very few similar stories to compare.
Asking “Is this story fifty times as hard as that story” is a very different question
from “Is this story about one-and-a-half times that one?”

The solution to this, of course, is to break the large story or feature into
multiple smaller items and estimate those. However, you need to be careful not
to go too far with this approach. The easiest way to illustrate the problem is with
a nonsoftware example. Let’s use disaggregation to estimate my golf score this
weekend. Assume the course I am playing has eighteen holes each with a par of
four. (If you’re unfamiliar with golf scoring, the par score is the number of shots

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

56 | Chapter 6 Techniques for Estimating

it should take a decent player to shoot his ball into the cup at the end of the
hole.)

To estimate by disaggregation, we need to estimate my score for each hole.
There’s the first hole, and that’s pretty easy, so let’s give me a three on that. But
then I usually hit into the lake on the next hole, so that’s a seven. Then there’s
the hole with the sandtraps; let’s say a five. And so on. However, if I’m mentally
re-creating an entire golf course it is very likely I’ll forget one of the holes. Of
course, in this case I have an easy check for that, as I know there must be eigh-
teen individual estimates. But when disaggregating a story, there is no such
safety check.

Not only does the likelihood of forgetting a task increase if we disaggregate
too far, but summing estimates of lots of small tasks also leads to problems. For
example, for each of the 18 holes, I may estimate my score for that hole to be in
the range 3 to 8. Multiplying those by 18 gives me a full round range of 54 to
144. There’s no chance that I’ll do that well or that poorly. If asked for an esti-
mate of my overall score for a full round, I’m likely to say anywhere from 80 to
120, which is a much smaller range and a much more useful estimate.

Specific advice on splitting user stories is provided in Chapter 12, “Splitting
User Stories.”

Planning Poker
The best way I’ve found for agile teams to estimate is by playing planning poker
(Grenning 2002). Planning poker combines expert opinion, analogy, and disag-
gregation into an enjoyable approach to estimating that results in quick but re-
liable estimates.

Participants in planning poker include all of the developers on the team. Re-
member that developers refers to all programmers, testers, database engineers,
analysts, user interaction designers, and so on. On an agile project, this will typ-
ically not exceed ten people. If it does, it is usually best to split into two teams.
Each team can then estimate independently, which will keep the size down. The
product owner participates in planning poker but does not estimate.

At the start of planning poker, each estimator is given a deck of cards. Each
card has written on it one of the valid estimates. Each estimator may, for exam-
ple, be given a deck of cards that reads 0, 1, 2, 3, 5, 8, 13, 20, 40, and 100. The
cards should be prepared prior to the planning poker meeting, and the numbers
should be large enough to see across a table. Cards can be saved and used for the
next planning poker session.

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

Planning Poker | 57

For each user story or theme to be estimated, a moderator reads the descrip-
tion. The moderator is usually the product owner or an analyst. However, the
moderator can be anyone, as there is no special privilege associated with the
role. The product owner answers any questions that the estimators have. How-
ever, everyone is asked to remain aware of the effort/accuracy curve (Figure 6.1).
The goal in planning poker is not to derive an estimate that will withstand all fu-
ture scrutiny. Rather, the goal is to be somewhere well on the left of the effort
line, where a valuable estimate can be arrived at cheaply.

After all questions are answered, each estimator privately selects a card rep-
resenting his or her estimate. Cards are not shown until each estimator has
made a selection. At that time, all cards are simultaneously turned over and
shown so that all participants can see each estimate.

It is very likely at this point that the estimates will differ significantly. This is
actually good news. If estimates differ, the high and low estimators explain their
estimates. It’s important that this does not come across as attacking those esti-
mators. Instead, you want to learn what they were thinking about.

As an example, the high estimator may say, “Well, to test this story, we need
to create a mock database object. That might take us a day. Also, I’m not sure if
our standard compression algorithm will work, and we may need to write one
that is more memory efficient.” The low estimator may respond, “I was thinking
we’d store that information in an XML file—that would be easier than a database
for us. Also, I didn’t think about having more data—maybe that will be a
problem.”

The group can discuss the story and their estimates for a few more minutes.
The moderator can take any notes she thinks will be helpful when this story is
being programmed and tested. After the discussion, each estimator re-estimates
by selecting a card. Cards are once again kept private until everyone has esti-
mated, at which point they are turned over at the same time.

In many cases, the estimates will already converge by the second round. But
if they have not, continue to repeat the process. The goal is for the estimators to
converge on a single estimate that can be used for the story. It rarely takes more
than three rounds, but continue the process as long as estimates are moving
closer together. It isn’t necessary that everyone in the room turns over a card
with exactly the same estimate written down. If I’m moderating an estimation
meeting, and on the second round four estimators tell me 5, 5, 5, and 3, I will ask
the low estimator if she is OK with an estimate of 5. Again, the point is not abso-
lute precision but reasonableness.

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

58 | Chapter 6 Techniques for Estimating

Smaller Sessions
It is possible to play planning poker with a subset of the team, rather than in-
volving everyone. This isn’t ideal but may be a reasonable option, especially if
there are many, many items to be estimated, as can happen at the start of a new
project.

The best way to do this is to split the larger team into two or three smaller
teams, each of which must have at least three estimators. It is important that
each of the teams estimates consistently. What your team calls three story points
or ideal days had better be consistent with what my team calls the same. To
achieve this, start all teams together in a joint planning poker session for an
hour or so. Have them estimate ten to twenty stories. Then make sure each team
has a copy of these stories and their estimates and that they use them as base-
lines for estimating the stories they are given to estimate.

When to Play Planning Poker
Teams will need to play planning poker at two different times. First, there will
usually be an effort to estimate a large number of items before the project offi-
cially begins or during its first iterations. Estimating an initial set of user stories
may take a team two or three meetings of from one to three hours each. Natu-
rally, this will depend on how many items there are to estimate, the size of the
team, and the product owner’s ability to clarify the requirements succinctly.

Second, teams will need to put forth some ongoing effort to estimate any
new stories that are identified during an iteration. One way to do this is to plan

The Right Amount of Discussion
Some amount of preliminary design discussion is necessary and appropri-
ate when estimating. However, spending too much time on design dis-
cussions sends a team too far up the effort/accuracy curve of Figure 6.1.
Here’s an effective way to encourage some amount of discussion but
make sure that it doesn’t go on too long.

Buy a two-minute sand timer, and place it in the middle of the table
where planning poker is being played. Anyone in the meeting can turn
the timer over at any time. When the sand runs out (in two minutes), the
next round of cards is played. If agreement isn’t reached, the discussion
can continue. But someone can immediately turn the timer over, again
limiting the discussion to two minutes. The timer rarely needs to be
turned over more than twice. Over time this helps teams learn to esti-
mate more rapidly.

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

Why Planning Poker Works | 59

to hold a very short estimation meeting near the end of each iteration. Normally,
this is quite sufficient for estimating any work that came in during the iteration,
and it allows new work to be considered in the prioritization of the coming iter-
ation.

Alternatively, Kent Beck suggests hanging an envelope on the wall with all
new stories placed in the envelope. As individuals have a few spare minutes, they
will grab a story or two from the envelope and estimate them. Teams will estab-
lish a rule for themselves, typically that all stories must be estimated by the end
of the day or by the end of the iteration. I like the idea of hanging an envelope on
the wall to contain unestimated stories. However, I’d prefer that when someone
has a few spare minutes to devote to estimating, he find at least one other person
and that they estimate jointly.

Why Planning Poker Works
Now that I’ve described planning poker, it’s worth spending a moment on some
of the reasons why it works so well.

First, planning poker brings together multiple expert opinions to do the es-
timating. Because these experts form a cross-functional team from all disci-
plines on a software project, they are better suited to the estimation task than
anyone else. After completing a thorough review of the literature on software es-
timation, Jørgensen (2004) concluded that “the people most competent in solv-
ing the task should estimate it.”

Second, a lively dialogue ensues during planning poker, and estimators are
called upon by their peers to justify their estimates. This has been found to im-
prove the accuracy of the estimate, especially on items with large amounts of un-
certainty (Hagafors and Brehmer 1983). Being asked to justify estimates has also
been shown to result in estimates that better compensate for missing informa-
tion (Brenner et al. 1996). This is important on an agile project because the user
stories being estimated are often intentionally vague.

Third, studies have shown that averaging individual estimates leads to better
results (Hoest and Wohlin 1998) as do group discussions of estimates (Jørgensen
and Moløkken 2002). Group discussion is the basis of planning poker, and those
discussions lead to an averaging of sorts of the individual estimates.

Finally, planning poker works because it’s fun.

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

60 | Chapter 6 Techniques for Estimating

Summary
Expending more time and effort to arrive at an estimate does not necessarily in-
crease the accuracy of the estimate. The amount of effort put into an estimate
should be determined by the purpose of that estimate. Although it is well known
that the best estimates are given by those who will do the work, on an agile team
we do not know in advance who will do the work. Therefore, estimating should
be a collaborative activity for the team.

Estimates should be on a predefined scale. Features that will be worked on
in the near future and that need fairly reliable estimates should be made small
enough that they can be estimated on a nonlinear scale from 1 to 10 such as 1, 2,
3, 5, and 8 or 1, 2, 4, and 8. Larger features that will most likely not be imple-
mented in the next few iterations can be left larger and estimated in units such
as 13, 20, 40, and 100. Some teams choose to include 0 in their estimation scale.

To arrive at an estimate, we rely on expert opinion, analogy, and disaggrega-
tion. A fun and effective way of combining these is planning poker. In planning
poker, each estimator is given a deck of cards with a valid estimate shown on
each card. A feature is discussed, and each estimator selects the card that repre-
sents his or her estimate. All cards are shown at the same time. The estimates are
discussed and the process repeated until agreement on the estimate is reached.

Discussion Questions

1. How good are your estimates today? Which techniques do you primarily rely
on: expert opinion, analogy, or disaggregation?

2. Which estimation scale do you prefer? Why?

3. Who should participate in planning poker on your project?

From "Agile Estimating and Planning" by Mike Cohn
Copyright 2005 Addison-Wesley

