

Today's agenda Overview Estimating size Story points Ideal time Techniques for estimating Iteration planning Release planning Estimating velocity Havannah Copyright Mountain Goet Software, LLC

Release, iteration, & velocity

- A release comprises multiple iterations
- Each iteration can be thought of as a samesized box
- Stories are put into each box until it's full
- The size of the box is the planned velocity

Copyright Mountain Goat Software, LLC

Ideal days

- · How long something would take if
 - · it's all you worked on
 - · you had no interruptions
 - · and everything you need is available
- The ideal time of a football game is 60 minutes
 - The elapsed time is much longer (3½ hours?)

Ideal time vs. elapsed time

- It's easier to estimate in ideal time
- It's too hard to estimate directly in elapsed time
 - Need to consider all the factors that affect elapsed time at the same time you're estimating

Copyright Mountain Goat Software, LLC

17

Pair programming

- . It doesn't matter as long as you're consistent
 - If two of you will work on it for a full ideal day, call it 2 ideal days total

Specialization

- First, don't worry about it too much
 - We're usually better off with fairly rapid, imprecise estimates than spending more time
- Second
 - Just add up the components and report one total estimate of ideal days

Copyright Mountain Goat Software, LLC

19

Which do you prefer?

- 1) Do you prefer story points or ideal time?
- 2) Why?

Advantages to story points

- Story points help drive cross-functional behavior
- Story point estimates do not decay
- Story points are a pure measure of size
- Estimating in story points is typically faster
- My ideal days are not your ideal days
- There are studies that show we are better at relative estimating

Copyright Mountain Goat Software, LLC

21

Advantages to ideal days

- · Ideal days are easier to explain outside the team
- Ideal days are easier to estimate at first

What I usually do

- Initially
 - Start with ideal time
 - Gives the team a nice foundation for the initial stories.
 - Helps team get started
 - Define "I story point = I ideal day"
- Then
 - Gradually convert team to thinking in unit-less story points
 - "This story is like that story."
 - Stop talking about how long it will take

Copyright Mountain Goat Software, LLC

23

Today's agenda

- **Overview**
- Estimating size
 - ✓ Story points
 - ☑ Ideal-time
- Techniques for estimating
- ☐ Iteration planning
- Release planning
- Estimating velocity
- ☐ Havannah

Estimate by analogy

- Comparing a user story to others
 - "This story is like that story, so its estimate is what that story's estimate was."
- Don't use a single gold standard
- Triangulate instead
 - Compare the story being estimated to multiple other stories

Copyright Mountain Goat Software, LLC

25

Triangulation

- Confirm estimates by comparing the story to multiple other stories.
- Group like-sized stories on table or whiteboard

Planning poker

- An iterative approach to estimating
- Steps
 - Each estimator is given a deck of cards, each card has a valid estimate written on it
 - Customer/Product owner reads a story and it's discussed briefly
 - · Each estimator selects a card that's his or her estimate
 - · Cards are turned over so all can see them
 - Discuss differences (especially outliers)
 - Re-estimate until estimates converge

Copyright Mountain Goat Software, LLC

29

Planning poker - an example Estimator Round I Round 2 Susan 3 5 Vadim 8 5 Ann 2 5

Chris

Copyright Mountain Goat Software, LLC

8

Remodeling my kitchen

- 1. Install new hardwood floor
- 2. Refinish (remove, sand, repaint) the cabinets
- 3. Install granite countertop instead of tile
- 4. Repaint entire kitchen
- 5. Lay shelf paper
- 6. Install recessed lighting
- 7. Replace electric stove with gas stove
- 8. Install built-in refrigerator
- 9. Install a new oven
- 10. Plumb the island and add sink
- Replace simple window with a bay window

Copyright Mountain Goat Software, LLC

31

Today's agenda

- M Overview
- **Estimating** size

 - ☑ Ideal time
- Techniques for estimating
- ☐ Iteration planning

- Release planning
- Estimating velocity
- Havannah

Commitment-driven iteration planning

- Discuss the highest priority item on the product backlog
- Decompose it into tasks
- Estimate each task
 - Whole team estimates each task
- Ask ourselves, "Can we commit to this?"
 - If yes, see if we can add another backlog item
 - If not, remove this item but see if we can add another smaller one
- No one signs up for specific tasks yet

Copyright Mountain Goat Software, LLC

35

--Code the abc class (8 hours) --Code the user interface (4) --Write test fixtures (4) --Code the xyz class (6) --Update performance tests (4) --Prototype the UI (8 hours) --Demo UI to 3 outside users (3) --Code new UI (12) --Update documentation (3)

Take items in priority order (mostly)

- Take items based on the order defined by the product owner
- · But:
 - Pay attention to possible synergies with (slightly) lower priority items
- Typical iteration may work on items 1, 2, 3, and 8

Copyright Mountain Goat Software, LLC

37

Today's agenda

- Overview
- **T** Estimating size
 - Story points
 - ☑ Ideal time
- ☑ Techniques for estimating
- ☑ Iteration planning
- Release planning
- ☐ Estimating velocity
- Havannah

Software, LLC

Changing the release plan

	Story A	5
	Story B	3
	Story C	5
	Story F	3
	Story D	5
	Story E	5
	Story G	3
	Story I	3
	Story H	5
	Story J	2
	Story K	5
	Story L	3

	Story A	5
	Story B	3
	Story C	5
	Story F	3
	Story D	5
	Story E	5
	Story G	3
	Story I	3
	Story H	5
	Story J	2
-	Story K	-5-
	Story L	3

41

Today's agenda

- Overview
- **E**stimating size

 - ☑ Ideal time
- ☑ Techniques for estimating
- ☑ Iteration planning
- M Release planning
- ☐ Estimating velocity
- ☐ Havannah

43

Forecasting velocity

- Just like commitment-driven iteration planning
 - · Estimate available hours for the iteration
 - · Repeat until full:
 - Pick a story, break into tasks, estimate each task

Ideally, "plan" more than one iteration

An example

Estimating available hours

Person	Hours per Day	Hours per Iteration
Sergey	4-6	40-60
Yuri	5-7	50-70
Carina	2-3	20-30
-	110-160	

R

Copyright Mountain Goat Software, LLC

Put a range around it

- You're unlikely to have precisely forecasted the exact velocity the team will average
- So, put a range around your estimate
 - I suggest plus and minus from 10% to 60%

Copyright Mountain Goat Software, LLC

Today's agenda

- Overview
- **E**stimating size

 - ☑ Ideal time
- ☑ Techniques for estimating
- ☑ Iteration planning
- ☑ Release planning
- **Estimating** velocity
- Havannah

Copyright Mountain Goat Software, LLC

User stories

- 1. As a new player, I can play against a medium-strength computer opponent.
- 2. As an experienced player, I can play against a strong computer opponent.
- 3. As a player, I can save and restore a game.
- As a player, I can use the program to play against another human on my computer.
- As a player, I'd like to be able to choose between a wooden board and pieces and a metal board and pieces.
- 6. As a player, I'd like to ask for a hint.
- As a player, I want to place a piece on the board using either my keyboard or my mouse.
- 8. As a player, I'd like to undo and redo moves.
- 9. As a new player, I want access to an online help system.
- As a player, I want all pieces of the winning shape to blink or glow so that I can see the winning shape.
- As a new player, I'd like to be warned after making a horrible move and be given the chance to take it back.

Copyright Mountain Goat Software, LLC

51

Planning Havannah

- 1) Estimate all of the Havannah stories
- 2) Invent a small team of 3-4 people
- 3) Plan their first iteration
- 4) Forecast their velocity
- 5) Develop the release plan

