
Becoming an Effective 
Product Owner

Mike Cohn
14 November 2006

© Mountain Goat Software, LLC

Four questions

What are some differences between the role 
of the product owner and the ScrumMaster?

What are the primary responsibilities of the 
product owner?

What skills should the ideal product owner 
possess?

What things would you expect to happen on 
a project without a product owner?

1

2



© Mountain Goat Software, LLC

Traditional view of product management

© Mountain Goat Software, LLC

Traditional development

• Prior to Scrum and Agile, it was considered 
prudent to understand what was wanted and 
how it was going to be delivered at the very 
start of the project.

• All future work hung off, depended on this 
work.

• The theory was that changes at the start of the 
project cost $1, but the same change made 
when the project was 60% complete cost $100.

3

4



© Mountain Goat Software, LLC

Product owner helps reduce uncertainty

Means Uncertainty

En
d 

U
nc

er
ta

in
ty

High

Low

High Low

Waterfall

Means Uncertainty
En

d 
U

nc
er

ta
in

ty

High

Low

High Low

Agile

© Mountain Goat Software, LLC

Emergence
• It is impossible to know all requirements in

advance

• “Thinking harder” and “thinking longer” can
uncover some requirements, but

• Emergent requirements are those our users cannot 
identify in advance

5

6



© Mountain Goat Software, LLC

So what do we do?

• We talk more, write less
• But write some if you need to

• Show software to users

• Acknowledge that requirements emerge
• And all that this implies

• Progressively refine our understanding of the 
product
• And express this progressive refinement in the product 

backlog

© Mountain Goat Software, LLC

The planning onion

7

8



© Mountain Goat Software, LLC

© Mountain Goat Software, LLC

Stories make great backlog items

•Stories are traditionally written 
on note cards.

•May be annotated with notes, 
estimates, etc.

Card

Source: XP Magazine 8/30/01, Ron Jeffries.

•Details behind the story come 
out during conversations with 
product owner

Conversation

•Acceptance tests confirm the 
story was coded correctly

Confirmation

9

10



© Mountain Goat Software, LLC

Samples from a travel website

© Mountain Goat Software, LLC

Where are the details?

• As a user, I can cancel a reservation.

• Does the user get a full or partial refund?

• Is the refund to her credit card or is it site credit?

• How far ahead must the reservation be cancelled?

• Is that the same for all hotels?

• For all site visitors? Can frequent travelers cancel later?

• Is a confirmation provided to the user?

• How?

11

12



© Mountain Goat Software, LLC

Details as conditions of satisfaction

• The product owner’s conditions of satisfaction can be 
added to a story

• These are essentially tests

© Mountain Goat Software, LLC

Details added in smaller stories

13

14



© Mountain Goat Software, LLC

Stocking the product backlog

• You can start by identifying only a sprint’s worth of 
backlog items

• But, it’s often quick and easy to stock the product 
backlog with most of its items

• This is helpful for release planning, expectation setting, 
and can influence design and coding

• The key is to write product backlog items with 
different levels of detail

• Fine-grained for stories about to be worked on

• Coarse-grained for stories further in the future

© Mountain Goat Software, LLC

The product backlog iceberg
User Story
A description of desired 
functionality told from the 
perspective of the user or 
customer.

Theme
A collection of related 
user stories.

Epic
A large user story.

15

16



© Mountain Goat Software, LLC

An example

An epic;
weeks to implement

Implementation-size stories;
days to implement

© Mountain Goat Software, LLC

An example

17

18



© Mountain Goat Software, LLC

Story-writing workshops

• Includes developers, users, customer, others

• Brainstorm to generate stories 

• Goal is to write as many stories as possible

• Some will be “implementation ready”

• Others will be “epics”

• No prioritization at this point

© Mountain Goat Software, LLC

Start with epics and iterate

19

20



© Mountain Goat Software, LLC

Another approach

• Walk through a low-fidelity (paper) user 
interface

• Ask open-ended, context-free questions as you go:

• What will the users most likely want to do next?

• What mistakes could the user make here?

• What could confuse the user at this point?

• What additional information could the user need?

• Consider these questions for each user role

© Mountain Goat Software, LLC

Try this template:
“As a <user role>, I want <goal>
so that <reason>.”

MyCookSpace.com
Your team has been hired and given gobs of VC money to 
create a social networking site (like MySpace) for cooks. The 
idea is that cooks will exchange recipes and tips. They’ll also 
buy kitchen-related products from the advertisers on the 
site. We want some novel way of rewarding cooks who post 
the best and most popular recipes as noted by other cooks 
on the site.

Write some user stories for MyCookSpace.com.

21

22



© Mountain Goat Software, LLC

How much detail?
Process Output

Input

Just-in-time

just-enough

© Mountain Goat Software, LLC

What makes a good story?

23

24



© Mountain Goat Software, LLC

ndependent
• Dependenices lead to problems estimating and 

prioritizing
• Can ideally select a story to work on without pulling 

in 18 other stories

egotiable
• Stories are not contracts
• Leave or imply some flexibility

aluable
• To users or customers, not developers
• Rewrite developer stories to reflect value to users or 

customers

© Mountain Goat Software, LLC

stimatable
• Because plans are based on user stories, we need to 

be able to estimate them

ized Appropriately
• Small enough to complete in one sprint if you’re 

about to work on it
• Bigger if further off on the horizon

estable
• Testable so that you have a easy, binary way of 

knowing whether a story is finished
• Done or not done; no “partially finished” or “done 

except”

25

26



© Mountain Goat Software, LLC

© Mountain Goat Software, LLC

Prioritizing the product backlog 

Three steps

1. Organize needs into themes

2. Assess importance of each theme

3. Prioritize themes

27

28



© Mountain Goat Software, LLC

Why themes?

• Often individual stories cannot be prioritized 
against each other

• What’s more important in a word processor?

• The A key or the E key?

• Tables or undo?

• What’s more important on a car?

• The left front wheel or the right front wheel?

• Increased leg room or a larger engine?

© Mountain Goat Software, LLC

Steps for organizing into themes

1. Write each story on its own note card or 
post-it

2. Eliminate redundant stories

3. Group similar stories

4. Label each group with a theme name

5. If you have a lot of themes or have small 
themes, consider making themes of themes

6. Review the results

29

30



© Mountain Goat Software, LLC

Affinity grouping

• Distribute cards equally to all participants

• No particular pattern to how you do this

• Someone reads a card and places in on wall / 
table

• Others look for similar cards and add them to it

• Next person reads a card, places it, and others 
place similar cards with it

• Continue repeating until out of cards

© Mountain Goat Software, LLC

An example

31

32



© Mountain Goat Software, LLC

Typical results

© Mountain Goat Software, LLC

• Two general approaches
1. Team opinion
2. Survey users

• Some specific approaches
• Theme screening

• Theme scoring

• Relative weighting

• Kano analysis

• Financial analysis

• Analytic Hierarchy Process

Step 2
Assess importance of each theme

33

34



© Mountain Goat Software, LLC

Choosing your approach

© Mountain Goat Software, LLC

Theme screening

• Identify 5-9 (approximately) selection criteria 
for what is important in the next release

• Select a baseline theme

• Likely to be included in the next release

• Understood by most team members

• Assess each candidate theme relative to the 
baseline theme

35

36



© Mountain Goat Software, LLC

Theme screening: an example

+ + - 0 - + 0

+ - 0 0 0 0 0

+ 0 0 0 + + +

0 0 0 0 + 0 +

+ = better than

0 = same as

- = worse than

© Mountain Goat Software, LLC

Theme scoring
• Like theme screening but selection criteria are 

weighted

• Need to select a baseline theme for each criteria

• Avoids compression of a category

• Each theme is assessed against the baseline for each 
selection criteria

37

38



© Mountain Goat Software, LLC

Theme scoring:  An example

25 3 0.75

10

15

50

2 0.20

3 0.45

5 2.50

1 0.25

3 0.30

4 0.60

2 1.00

4 1.00

3 0.30

4 0.60

3 1.50

© Mountain Goat Software, LLC

Prioritizing MyCookSpace.com
• Assume we have a minimally functional site up 

with 4,000 registered cooks
• We want 400,000 cooks

• As groups, decide whether you want to use theme 
screening or theme scoring.

• Identify 4-5 themes
• Identify some selection criteria

• What’s important to the company in making this 
decision?

• Complete a theme screening/scoring worksheet

39

40



Net score

Rank

Continue?

+ = Better than           0 = Same as           − = Worse than

Theme Screening Worksheet
S

el
ec

tio
n 

C
rit

er
ia

Themes



W
ei

gh
t

Ra
tin

g Weighted 
Score Ra

tin
g Weighted 

Score Ra
tin

g Weighted 
Score Ra

tin
g Weighted 

Score Ra
tin

g Weighted 
Score

Net Score

Rank

Continue?

Selection Criteria

Theme Scoring Worksheet



© Mountain Goat Software, LLC

Relative weighting
• Assess the impact of having a story/theme from 1-9

• Assess impact of NOT having it from 1-9

• Calculate the value of each story or theme relative to the 
entire product backlog

• This gives you the relative value of that story or theme

• Developers estimate the cost of each story theme

• Calculate the cost of each story or theme relative to the 
entire product backlog

• This gives the relative cost of that story or theme

• Priority is given by (Relative Value ÷ Relative Cost)

© Mountain Goat Software, LLC

Relative weighting: an example 

8 6 14 40 64 44 91

9 2 11 31 40 27 115

1 9 10 29 42 29 100

41

42



© Mountain Goat Software, LLC

An example with weights

8 6 22 41 64 44 93

9 2 20 38 40 27 141

1 9 11 21 42 29 72

2 1

© Mountain Goat Software, LLC

Priority poker
• An iterative approach to estimating:

• Stakeholders with a say in prioritizing are invited

• Each is given a deck of cards with the values A-9

• A moderator reads a theme and it’s discussed briefly

• Each estimator selects a card that is his or her estimate of 
the relative benefit of the theme

• Cards are turned over so all can see them

• Discuss differences (especially outliers)

• Re-estimate until estimates converge

• Repeat for relative penalty

43

44



© Mountain Goat Software, LLC

A

2
3 4 5 6 7 8 9

Priority poker - an example

© Mountain Goat Software, LLC

Relative weighting MyCookSpace.com

• Using priority poker and the relative weighting 
worksheet provided, prioritize the themes you’ve 
previously identified for MyCookSpace.com

45

46



R
el

at
iv

e 
B

en
ef

it

R
el

at
iv

e 
P

en
al

ty

To
ta

l V
al

ue

V
al

ue
 P

er
ce

nt

E
st

im
at

e

C
os

t P
er

ce
nt

P
rio

rit
y

Weight:
Th

em
es

Total: 100 100

Total Value = Relative Benefit + Relative Penalty (× weights if used)
Value Percent = Total Value ÷ ∑(Total Value)
Cost Percent = Estimate ÷ ∑Estimate
Priority = Value Percent / Cost Percent (higher = higher priority)

Relative Weighting Worksheet



© Mountain Goat Software, LLC

Kano analysis

© Mountain Goat Software, LLC

Surveying users

• To assess whether a feature is baseline, linear, 
or exciting we can:
• Sometimes guess

• Or survey a small set of users (20-30)

• We ask two questions
• A functional question

• How do you feel if a feature is present?

• And a dysfunctional question

• How do you feel if that feature is absent?

47

48



© Mountain Goat Software, LLC

Functional and dysfunctional forms

© Mountain Goat Software, LLC

Categorizing an answer pair

M Mandatory

L Linear

E Exciter

Q Questionable

R Reverse

I Indifferent

49

50



© Mountain Goat Software, LLC

Aggregating results

Theme

© Mountain Goat Software, LLC

What to include

• All of the baseline features

• By definition, these must be present

• Some amount of linear features

• But leaving room for at least a few exciters

51

52



© Mountain Goat Software, LLC

Upcoming public classes

© Mountain Goat Software, LLC

Mike Cohn contact info

53

54



17

Chapter 2

Writing Stories

In this chapter we turn our attention to writing the stories. To create good sto-
ries we focus on six attributes. A good story is:

• Independent

• Negotiable

• Valuable to users or customers

• Estimatable

• Small

• Testable

Bill Wake, author of Extreme Programming Explored and Refactoring
Workbook, has suggested the acronym INVEST for these six attributes (Wake
2003a).

Independent

As much as possible, care should be taken to avoid introducing dependencies
between stories. Dependencies between stories lead to prioritization and plan-
ning problems. For example, suppose the customer has selected as high priority
a story that is dependent on a story that is low priority. Dependencies between
stories can also make estimation much harder than it needs to be. For example,
suppose we are working on the BigMoneyJobs website and need to write stories
for how companies can pay for the job openings they post to our site. We could
write these stories:

1. A company can pay for a job posting with a Visa card.

2. A company can pay for a job posting with a MasterCard.

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



18 WRITING STORIES

3. A company can pay for a job posting with an American Express card.

Suppose the developers estimate that it will take three days to support the
first credit card type (regardless of which it is) and then one day each for the
second and third. With highly dependent stories such as these you don’t know
what estimate to give each story—which story should be given the three day
estimate?

When presented with this type of dependency, there are two ways around it:

• Combine the dependent stories into one larger but independent story

• Find a different way of splitting the stories

Combining the stories about the different credit card types into a single large
story (“A company can pay for a job posting with a credit card”) works well in
this case because the combined story is only five days long. If the combined
story is much longer than that, a better approach is usually to find a different
dimension along which to split the stories. If the estimates for these stories had
been longer, then an alternative split would be:

1. A customer can pay with one type of credit card.

2. A customer can pay with two additional types of credit cards.

If you don’t want to combine the stories and can’t find a good way to split
them, you can always take the simple approach of putting two estimates on the
card: one estimate if the story is done before the other story, a lower estimate if
it is done after.

Negotiable

Stories are negotiable. They are not written contracts or requirements that the
software must implement. Story cards are short descriptions of functionality,
the details of which are to be negotiated in a conversation between the cus-
tomer and the development team. Because story cards are reminders to have a
conversation rather than fully detailed requirements themselves, they do not
need to include all relevant details. However, if at the time the story is written
some important details are known, they should be included as annotations to
the story card, as shown in Story Card 2.1. The challenge comes in learning to
include just enough detail.

Story Card 2.1 works well because it provides the right amount of informa-
tion to the developer and customer who will talk about the story. When a devel-

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



NEGOTIABLE 19

oper starts to code this story, she will be reminded that a decision has already
been made to accept the three main cards and she can ask the customer if a
decision has been made about accepting Discover cards. The notes on the card
help a developer and the customer to resume a conversation where it left off
previously. Ideally, the conversation can be resumed this easily regardless of
whether it is the same developer and customer who resume the conversation.
Use this as a guideline when adding detail to stories.

On the other hand, consider a story that is annotated with too many notes,
as shown in Story Card 2.2. This story has too much detail (“Collect the expi-
ration month and date of the card”) and also combines what should probably
be a separate story (“The system can store a card number for future use”).

Working with stories like Story Card 2.2 is very difficult. Most readers of
this type of story will mistakenly associate the extra detail with extra precision.
However, in many cases specifying details too soon just creates more work. For
example, if two developers discuss and estimate a story that says simply “a
company can pay for a job posting with a credit card” they will not forget that
their discussion is somewhat abstract. There are too many missing details for

A company can pay for a job posting with a credit card.

Note: Accept Visa, MasterCard, and American Express.
Consider Discover.

■ Story Card 2.1 A story card with notes providing additional detail.

A company can pay for a job posting with a credit card.
Note: Accept Visa, MasterCard, and American Express.
Consider Discover. On purchases over $100, ask for card ID
number from back of card. The system can tell what type of card
it is from the first two digits of the card number. The system
can store a card number for future use. Collect the expiration
month and date of the card.

■ Story Card 2.2 A story card with too much detail.

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



20 WRITING STORIES

them to mistakenly view their discussion as definitive or their estimate as accu-
rate. However, when as much detail is added as in Story Card 2.2, discussions
about the story are much more likely to feel concrete and real. This can lead to
the mistaken belief that the story cards reflect all the details and that there’s no
further need to discuss the story with the customer.

If we think about the story card as a reminder for the developer and cus-
tomer to have a conversation, then it is useful to think of the story card as con-
taining:

• a phrase or two that act as reminders to hold the conversation

• notes about issues to be resolved during the conversation

Details that have already been determined through conversations become
tests. Tests can be noted on the back of the story card if using note cards or in
whatever electronic system is being used. Story Card 2.3 and Story Card 2.4
show how the excess detail of Story Card 2.2 can be turned into tests, leaving
just notes for the conversation as part of the front of the story card. In this way,
the front of a story card contains the story and notes about open questions
while the back of the card contains details about the story in the form of tests
that will prove whether or not it works as expected.

Valuable to Purchasers or Users

It is tempting to say something along the lines of “Each story must be valued by
the users.” But that would be wrong. Many projects include stories that are not
valued by users. Keeping in mind the distinction between user (someone who
uses the software) and purchaser (someone who purchases the software), sup-
pose a development team is building software that will be deployed across a

A company can pay for a job posting with a credit card.

Note: Will we accept Discover cards?
Note for UI: Don’t have a field for card type (it can be derived
from first two digits on the card).

■ Story Card 2.3 The revised front of a story card with only the story and questions 
to be discussed.

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



VALUABLE TO PURCHASERS OR USERS 21

large user base, perhaps 5,000 computers in a single company. The purchaser of
a product like that may be very concerned that each of the 5,000 computers is
using the same configuration for the software. This may lead to a story like “All
configuration information is read from a central location.” Users don’t care
where configuration information is stored but purchasers might.

Similarly, stories like the following might be valued by purchasers contem-
plating buying the product but would not be valued by actual users:

• Throughout the development process, the development team will produce
documentation suitable for an ISO 9001 audit.

• The development team will produce the software in accordance with
CMM Level 3.

What you want to avoid are stories that are only valued by developers. For
example, avoid stories like these:

• All connections to the database are through a connection pool.

• All error handling and logging is done through a set of common classes.

As written, these stories are focused on the technology and the advantages to
the programmers. It is very possible that the ideas behind these stories are good
ones but they should instead be written so that the benefits to the customers or
the user are apparent. This will allow the customer to intelligently prioritize
these stories into the development schedule. Better variations of these stories
could be the following:

• Up to fifty users should be able to use the application with a five-user
database license.

• All errors are presented to the user and logged in a consistent manner.

Test with Visa, MasterCard and American Express (pass).
Test with Diner’s Club (fail).
Test with good, bad and missing card ID numbers.
Test with expired cards.
Test with over $100 and under $100.

■ Story Card 2.4 Details that imply test cases are separated from the story itself. 
Here they are shown on the back of the story card.

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



22 WRITING STORIES

In exactly the same way it is worth attempting to keep user interface assump-
tions out of stories, it is also worth keeping technology assumptions out of sto-
ries. For example, the revised stories above have removed the implicit use of a
connection pool and a set of error handling classes.

The best way to ensure that each story is valuable to the customer or users is
to have the customer write the stories. Customers are often uncomfortable with
this initially—probably because developers have trained them to think of every-
thing they write as something that can be held against them later. (“Well, the
requirements document didn’t say that…”) Most customers begin writing sto-
ries themselves once they become comfortable with the concept that story cards
are reminders to talk later rather than formal commitments or descriptions of
specific functionality.

Estimatable

It is important for developers to be able to estimate (or at least take a guess at)
the size of a story or the amount of time it will take to turn a story into working
code. There are three common reasons why a story may not be estimatable:

1. Developers lack domain knowledge.

2. Developers lack technical knowledge.

3. The story is too big.

First, the developers may lack domain knowledge. If the developers do not
understand a story as it is written, they should discuss it with the customer who
wrote the story. Again, it’s not necessary to understand all the details about a
story, but the developers need to have a general understanding of the story.

Second, a story may not be estimatable because the developers do not under-
stand the technology involved. For example, on one Java project we were asked
to provide a CORBA interface into the system. No one on the team had done
that so there was no way to estimate the task. The solution in this case is to
send one or more developers on what Extreme Programming calls a spike,
which is a brief experiment to learn about an area of the application. During
the spike the developers learn just enough that they can estimate the task. The
spike itself is always given a defined maximum amount of time (called a time-
box), which allows us to estimate the spike. In this way an unestimatable story
turns into two stories: a quick spike to gather information and then a story to
do the real work.

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



SMALL 23

Finally, the developers may not be able to estimate a story if it is too big. For
example, for the BigMoneyJobs website, the story “A Job Seeker can find a
job” is too large. In order to estimate it the developers will need to disaggregate
it into smaller, constituent stories.

A Lack of Domain Knowledge
As an example of needing more domain knowledge, we were building a website

for long-term medical care of chronic conditions. The customer (a highly qualified
nurse) wrote a story saying “New users are given a diabetic screening.” The develop-
ers weren’t sure what that meant and it could have run the gamut from a simple web
questionnaire to actually sending something to new users for an at-home physical
screening, as was done for the company’s product for asthma patients. The develop-
ers got together with the customer and found out that she was thinking of a simple
web form with a handful of questions.

Even though they are too big to estimate reliably, it is sometimes useful to
write epics such as “A Job Seeker can find a job” because they serve as place-
holders or reminders about big parts of a system that need to be discussed. If
you are making a conscious decision to temporarily gloss over large parts of a
system, then consider writing an epic or two that cover those parts. The epic
can be assigned a large, pulled–from–thin–air estimate.

Small

Like Goldilocks in search of a comfortable bed, some stories can be too big,
some can be too small, and some can be just right. Story size does matter
because if stories are too large or too small you cannot use them in planning.
Epics are difficult to work with because they frequently contain multiple sto-
ries. For example, in a travel reservation system, “A user can plan a vacation” is
an epic. Planning a vacation is important functionality for a travel reservation
system but there are many tasks involved in doing so. The epic should be split
into smaller stories. The ultimate determination of whether a story is appropri-
ately sized is based on the team, its capabilities, and the technologies in use.

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



24 WRITING STORIES

Splitting Stories

Epics typically fall into one of two categories:

• The compound story

• The complex story

A compound story is an epic that comprises multiple shorter stories. For
example, the BigMoneyJobs system may include the story “A user can post her
resume.” During the initial planning of the system this story may be appropri-
ate. But when the developers talk to the customer, they find out that “post her
resume” actually means:

• that a resume can include education, prior jobs, salary history, publica-
tions, presentations, community service, and an objective

• that users can mark resumes as inactive

• that users can have multiple resumes

• that users can edit resumes

• that users can delete resumes

Depending on how long these will take to develop, each could become its
own unique story. However, that may just take an epic and go too far in the
opposite direction, turning it into a series of stories that are too small. For
example, depending on the technologies in use and the size and skill of the
team, stories like these will generally be too small:

• A Job Seeker can enter a date for each community service entry on a
resume.

• A Job Seeker can edit the date for each community service entry on a
resume.

• A Job Seeker can enter a date range for each prior job on a resume.

• A Job Seeker can edit the date range for each prior job on a resume.

Generally, a better solution is to group the smaller stories as follows:

• A user can create resumes, which include education, prior jobs, salary his-
tory, publications, presentations, community service, and an objective.

• A user can edit a resume.

• A user can delete a resume.

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



SPLITTING STORIES 25

• A user can have multiple resumes.

• A user can activate and inactivate resumes.

There are normally many ways to disaggregate a compound story. The pre-
ceding disaggregation is along the lines of create, edit, and delete, which is com-
monly used. This works well if the create story is small enough that it can be
left as one story. An alternative is to disaggregate along the boundaries of the
data. To do this, think of each component of a resume as being added and
edited individually. This leads to a completely different disaggregation:

• A user can add and edit education information.

• A user can add and edit job history information.

• A user can add and edit salary history information.

• A user can add and edit publications.

• A user can add and edit presentations.

• A user can add and edit community service.

• A user can add and edit an objective.

And so on. 
Unlike the compound story, the complex story is a user story that is inher-

ently large and cannot easily be disaggregated into a set of constituent stories. If
a story is complex because of uncertainty associated with it, you may want to
split the story into two stories: one investigative and one developing the new
feature. For example, suppose the developers are given the story “A company
can pay for a job posting with a credit card” but none of the developers has
ever done credit card processing before. They may choose to split the stories
like this:

• Investigate credit card processing over the web.

• A user can pay with a credit card.

In this case the first story will send one or more developers on a spike. When
complex stories are split in this way, always define a timebox around the inves-
tigative story, or spike. Even if the story cannot be estimated with any reason-
able accuracy, it is still possible to define the maximum amount of time that will
be spent learning.

Complex stories are also common when developing new or extending known
algorithms. One team in a biotech company had a story to add novel extensions

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



26 WRITING STORIES

to a standard statistical approach called expectation maximization. The com-
plex story was rewritten as two stories: the first to research and determine the
feasibility of extending expectation maximization; the second to add that func-
tionality to the product. In situations like this one it is difficult to estimate how
long the research story will take.

Consider Putting the Spike in a Different Iteration
When possible, it works well to put the investigative story in one iteration and the

other stories in one or more subsequent iterations. Normally, only the investigative
story can be estimated. Including the other, non-estimatable stories in the same iter-
ation with the investigative story means there will be a higher than normal level of
uncertainty about how much can be accomplished in that iteration.

The key benefit of breaking out a story that cannot be estimated is that it
allows the customer to prioritize the research separately from the new function-
ality. If the customer has only the complex story to prioritize (“Add novel
extensions to standard expectation maximization”) and an estimate for the
story, she may prioritize the story based on the mistaken assumption that the
new functionality will be delivered in approximately that timeframe. If instead,
the customer has an investigative, spike story (“research and determine the fea-
sibility of extending expectation maximization”) and a functional story
(“extend expectation maximization”), she must choose between adding the
investigative story that adds no new functionality this iteration and perhaps
some other story that does.

Combining Stories

Sometimes stories are too small. A story that is too small is typically one that
the developer says she doesn’t want to write down or estimate because doing
that may take longer than making the change. Bug reports and user interface
changes are common examples of stories that are often too small. A good
approach for tiny stories, common among Extreme Programming teams, is to
combine them into larger stories that represent from about a half-day to several
days of work. The combined story is given a name and is then scheduled and
worked on just like any other story.

For example, suppose a project has five bugs and a request to change some
colors on the search screen. The developers estimate the total work involved

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



TESTABLE 27

and the entire collection is treated as a single story. If you’ve chosen to use
paper note cards, you can do this by stapling them together with a cover card.

Testable

Stories must be written so as to be testable. Successfully passing its tests proves
that a story has been successfully developed. If the story cannot be tested, how
can the developers know when they have finished coding?

Untestable stories commonly show up for nonfunctional requirements,
which are requirements about the software but not directly about its functional-
ity. For example, consider these nonfunctional stories:

• A user must find the software easy to use.

• A user must never have to wait long for any screen to appear.

As written, these stories are not testable. Whenever possible, tests should be
automated. This means strive for 99% automation, not 10%. You can almost
always automate more than you think you can. When a product is developed
incrementally, things can change very quickly and code that worked yesterday
can stop working today. You want automated tests that will find this as soon as
possible.

There is a very small subset of tests that cannot realistically be automated.
For example, a user story that says “A novice user is able to complete common
workflows without training” can be tested but cannot be automated. Testing
this story will likely involve having a human factors expert design a test that
involves observation of a random sample of representative novice users. That
type of test can be both time-consuming and expensive, but the story is testable
and may be appropriate for some products.

The story “a user never has to wait long for any screen to appear” is not test-
able because it says “never” and because it does not define what “wait long”
means. Demonstrating that something never happens is impossible. A far easier,
and more reasonable target, is to demonstrate that something rarely happens.
This story could have instead been written as “New screens appear within two
seconds in 95% of all cases.” And—even better—an automated test can be writ-
ten to verify this.

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



28 WRITING STORIES

Summary

• Ideally, stories are independent from one another. This isn’t always possi-
ble but to the extent it is, stories should be written so that they can be
developed in any order.

• The details of a story are negotiated between the user and the developers.

• Stories should be written so that their value to users or the customer is
clear. The best way to achieve this is to have the customer write the stories.

• Stories may be annotated with details, but too much detail obscures the
meaning of the story and can give the impression that no conversation is
necessary between the developers and the customer.

• One of the best ways to annotate a story is to write test cases for the story.

• If they are too big, compound and complex stories may be split into multi-
ple smaller stories.

• If they are too small, multiple tiny stories may be combined into one big-
ger story.

• Stories need to be testable.

Developer Responsibilities

• You are responsible for helping the customer write stories that are prom-
ises to converse rather than detailed specifications, have value to users or
the customer, are independent, are testable, and are appropriately sized.

• If tempted to ask for a story about the use of a technology or a piece of
infrastructure, you are responsible for instead describing the need in terms
of its value to users or the customer.

Customer Responsibilities

• You are responsible for writing stories that are promises to converse rather
than detailed specifications, have value to users or to yourself, are inde-
pendent, are testable, and are appropriately sized.

From "User Stories Applied" by Mike Cohn
Copyright 2004, Addison-Wesley



I Didn’t Know I
Needed T hat!
Finding Features 
to Satisfy Your 
Customers
BY  M I K E  C O H N

18 BETTER SOFTWARE FEBRUARY 2006 www.StickyMinds.com



www.StickyMinds.com FEBRUARY 2006 BETTER SOFTWARE 19

It is essential that the products we develop
satisfy our customers. A product that fails
in this regard is unlikely to be around for
very long. Unfortunately, many companies
and development teams do not consciously
plan for how a product will satisfy their
customers. The problem with this 
approach is that if you don’t have a plan
for customer satisfaction, you probably
won’t achieve it.

When planning to develop a desirable
new product, it is useful to group 
features based on their potential for 
impacting customer satisfaction. One
technique for doing so is known as Kano

analysis, after its originator Noriaki
Kano. In this approach, features are 
segregated into three categories—
mandatory, linear, and exciter. The 
differences between these types of features
are shown in Figure 1.

Mandatory features are those that are
required for a product to be competitive in
its space. For a mobile phone, mandatory
features are a speaker, a microphone, a 
numeric keypad, and so on. A manufacturer
should not plan on building a phone that is
missing any of these features. The line
through the bottom right of Figure 1
shows that no matter how much of a
mandatory feature is added, customer
satisfaction never rises above the midpoint.

phone itself; other times you’ll pay more
by purchasing a second battery. 

An intriguing and nonintuitive aspect
of customer satisfaction is that sometimes
the feature that provides the most 
satisfaction is one that customers didn’t
know they wanted until they saw it. For
example, before a camera practically 
became a standard feature on cell phones,
did you even know you wanted a camera
on your cell phone? These types of 
features are known as exciters and are
shown by the upward-pointing arrow
that begins at the upper left of Figure 1.
This arrow indicates that even a small
amount of an exciter can dramatically 
influence customer satisfaction with the
product. Mobile phone manufacturers,
for example, started with low resolution,
limited-capability cameras. That was
enough at the time for the camera to be
an exciting addition to a mobile phone. It
is often worthwhile to include an exciter
in a new product because customers will
pay a premium for the exciting feature. 

Let’s look at how to determine whether
a feature is mandatory, linear, or an exciter
and consider advice on how to combine
feature types into an optimal product. 

Categorizing Features

We can think about a feature and
make a reasonable assessment as to
whether it is mandatory, linear, or an
exciter. If we rely solely on our own 
judgment, however, we will certainly
make some mistakes. What is exciting to
us may not be exciting at all to the
prospective users of our product. This is
especially true if our backgrounds and
goals are not closely correlated to those of
our product’s users. We’ve seen too many
products that developers deemed exciting
but ended up being of no interest to users.

For these reasons, it is generally best
to survey a set of prospective users about
the features under consideration. I see a
lot of surveys of this nature, and most of
them make the same mistake. They pose
the question to the user from a single 
perspective, usually asking something
like “How important is this feature?”
Users then are allowed to respond with a
range of answers from “unimportant” to
“very important.” 

Asking about feature importance in

I don’t want a horrible microphone on my
mobile phone, but improving the quality
of the microphone can only increase 
my satisfaction with the phone up to a
certain point.

Similarly, I consider a spell checker to
be a mandatory feature in a word 
processor. However, no matter how 
wonderful a particular spell checker is or
how many words are in its dictionary, my
opinion of the word processor can only
rise so far based on the spell checker.
This is why the arrow in Figure 1 flattens
rapidly. A mandatory feature is required
for a user to consider using a product,

but more of the mandatory feature or a
better implementation of it can only take
customer satisfaction so far.

Linear features (shown by the diagonal
line through the middle of Figure 1) are those
for which customer satisfaction is directly
related to the amount of the feature present.
Your satisfaction with your cell phone 
increases linearly with the battery life of the
phone. Similarly, the more minutes included
in your monthly plan, the more satisfied
you become. Linear features have a direct
bearing on the price of a product. The
longer a cell phone can run without 
having its battery recharged, the more
you are willing to pay for the product. In
some cases you may pay extra for the

Exciters,
delighters

Mandatory,
must-have

Lin
ea

r, 
per

fo
rm

an
ce

A
b

se
n

t

High

Low

C
u

s
to

m
e
r 

S
a
ti

s
fa

c
to

n

Feature Presence

Fu
lly

Im
p

le
m

en
te

d

Figure 1: Mandatory, linear, and exciter features impact
customer satisfaction differently.



this way provides limited information.
For example, suppose a few years ago
you had asked prospective mobile phone
buyers “How important is having a cam-
era in your mobile phone?” Most likely,
they would have told you that it’s not
very important. However, they might
have finished the survey thinking, “I
hope they include the camera; that would
be great. What a wonderful new idea.”
The feature is an exciter, even though a
one-dimensional survey doesn’t reveal it.

Suppose instead of asking how 
important a feature is, you ask how 
desirable it is. You would get different 
results and might find out that having a
camera in a mobile phone is highly 
desirable. However, users would also 
respond that having a backlit number

3. I am neutral.
4. I can live with it that way.
5. I dislike it that way.

Suppose we are building a reporting
tool for users within our company and
are contemplating four new features:

� The ability to export a graph or
chart directly into a PowerPoint
presentation

� The ability to schedule reports to
run at certain times of the day

� The ability to save a report
� The ability to apply a style sheet

to a report 

To determine whether each of these is a
mandatory feature, a linear feature, or an
exciter, we ask prospective users:

� If you can export a graph or chart
directly into PowerPoint, how do
you feel?

� If you cannot export a graph or
chart directly into PowerPoint,
how do you feel?

� If you can schedule reports to run
at certain times of the day, how
do you feel?

� If you cannot schedule reports to
run at certain times of the day,
how do you feel?

� If you can save a report, how do
you feel?

� If you cannot save a report, how
do you feel?

� If you can apply a style sheet to a
report, how do you feel?

� If you cannot apply a style sheet
to a report, how do you feel?

The first pair of these questions and
hypothetical answers from one user are
shown in Figure 2.

Categorizing Responses

Think about the pair of responses in
Figure 2. The one user who answered
these two questions has said that 
she’d like to be able to export directly to
PowerPoint (the first question), but also
that she does not expect the feature to be
present. A feature that a user would like
but does not expect to get is an exciter,
an opportunity to add unexpected value.

Figure 3 provides a way of cross-
referencing the functional and dysfunc-
tional forms of a question pair, so that a 

pad is highly desirable for night use.
From the responses to a single question,
you would have no way of discerning
that the backlit number pad is mandatory
and that the camera is an exciter.

The best way to discern how a user
feels about a feature is to ask what she
thinks of the product if the feature is
present and what she thinks of the product
if the feature is not present. The first of
these questions is known as the functional
form, because it refers to the case when a

function is present. The second question is
known as the dysfunctional form, because
it refers to the case when the function is
not present. Each question is answered
on the same five-point scale:

1. I like it that way.
2. I expect it to be that way.

20 BETTER SOFTWARE FEBRUARY 2006 www.StickyMinds.com

Functional
form of

question
I am neutral.

I can live with it that way.

I dislike it that way.

I expect it to be that way.

I like it that way.

If you can export a
graph or chart directly

to PowerPoint,
how do you

feel?

Dysfunctional
form of

question
I am neutral.

I can live with it that way.

I dislike it that way.

I expect it to be that way.

I like it that way.

If you cannot export a
graph or chart directly

to PowerPoint,
how do you

feel?

X

X

Figure 2: Two questions are asked to determine how a user feels about a feature. 

Like

Expect

Neutral

Live with

Dislike

Dysfunctional
Question

Fu
nc

tio
na

l
Q

ue
st

io
n

Li
ke

Q

R

R

R

R

E
xp

ec
t

E

I

I

I

R

N
eu

tr
al

E

I

I

I

R

Li
ve

 w
it

h

E

I

I

I

R

D
is

lik
e

L

M

M

M

Q

M
L
E

Mandatory
Linear
Exciter

R
Q
I

Reverse
Questionable
Indifferent

Figure 3: Answers to the paired questions are cross-referenced to determine 
how an individual user views a feature. 



22 BETTER SOFTWARE FEBRUARY 2006 www.StickyMinds.com

prospective user’s responses can be 
reduced to a single meaning. We can
cross-reference the answers shown in 
Figure 2 with Figure 3 and discern that
the feature is an exciter. Similarly, if a
user says that she expects to be able to
save a report and dislikes it if she 
cannot, we can cross-reference those 
answers and see that saving a report is a
mandatory feature.

In addition to the three feature types
discussed thus far, Figure 3 introduces
three other results—reverse, questionable,
and indifferent. A reverse attribute 
indicates that the user would like the
opposite of the feature being proposed.
For example, suppose you think your 
e-commerce Web site should automatically
log out a user after five minutes of 
inactivity. To determine how users feel
about this question, you would ask
these two questions:

� If you are automatically logged
out after five minutes of inactivity,
how do you feel?

� If you are not automatically
logged out after five minutes of
inactivity, how do you feel?

Suppose a user answers that she is
neutral about being automatically logged
out, but she likes it if she is not. This user
is telling you that you are contemplating
a feature that will have a negative impact
on her satisfaction with your product.

Questionable features result when it
is unclear how the user feels about a 
feature. If you look at Figure 3, you’ll
notice that questionable results are 
obtained when the user likes it when a
feature is both present and not present,
or when she dislikes both its presence
and its absence. Response pairs like
these happen when someone gets 
confused while answering a survey.

her workgroup or department. Scheduling
is critical for this type of user, and she
considers the feature mandatory. The
other type of user plans to run her own
reports and usually no more than one or
two a day. Because of her lighter use,
this user would like the feature but does
not consider it mandatory.

Which Features to Include?
This article began with the claim that it

is important to have a plan for achieving
desired levels of customer satisfaction.
Having come this far—surveying a set of
prospective users, cross-referencing all 
answer pairs, and aggregating all results—
how can we use this information to make
sure we are planning a product that will
satisfy our intended users? 

First, all mandatory features must be
included in the plan. Next, the product
plan should include as many robustly
supported linear features as possible.
However, a little room should be left in
the plan for at least a few exciters—they
go a long way toward boosting customer
satisfaction and often enable a product to
be sold at a premium. {end}

Mike Cohn is the founder of Mountain
Goat Software, a process and project
management consultancy that specializes
in helping companies adopt and improve
their use of agile processes and techniques.
He is the author of Agile Estimating and
Planning and User Stories Applied: For
Agile Software Development. Mike is a
founding member of the Agile Alliance
and serves on its board of directors. He is
a technical editor for Better Software
magazine, a regular columnist for the
magazine and StickyMinds.com, and a
frequent presenter at STAR and Better
Software conferences. Mike can be reached
at mike@mountaingoatsoftware.com.

An indifferent feature is one the user
doesn’t care about. A lot of software 
programs (such as Word, which I used
when writing this article) include the
ability to split a window into multiple
panes. I never use that feature, and if 
surveyed about it, I would respond that I
am neutral regarding both its presence and
its absence. Including an indifferent feature
will not improve customer satisfaction.

Aggregating Results

The individual results obtained by
cross-referencing answer pairs in Figure 3
are aggregated to arrive at an overall 
category for each feature. After all, we’re
not as concerned with what individual
users think as we are with what users
think overall. Useful results often can be
obtained by surveying as few as twenty
or thirty likely users of your product. 
After results are tabulated, they are 
expressed in percentage terms and can be
presented as shown in Table 1.

Table 1 shows the percentage of 
respondents who consider each feature
an exciter, linear, mandatory, indifferent,
reverse, or questionable. The final 

column indicates the overall classification
of the feature based on an interpretation
of the results. Exporting a graph or chart
to PowerPoint is an exciter based on a
preponderance of user opinions.

Most of the responses indicate that
the scheduling a report feature is
mandatory. However, almost as many
people considered it linear. Rather than
simply calling the feature mandatory, a
feature with two high responses often 
warrants a bit more thought. Results
like this usually mean that two distinct
audiences have been surveyed about the
product. In this case, let’s suppose one
type of user will be running reports for

Table 1: Individual results are aggregated and an overall category selected. 

FEATURE EXCITER LINEAR MANDATORY INDIFFERENT REVERSE QUESTIONABLE CATEGORY
Export to PowerPoint 45% 10% 12% 30% 0% 3% Exciter
Schedule reports 11% 41% 44% 2% 1% 1% Linear/Mandatory
Save a report 0% 3% 95% 0% 0% 2% Mandatory
Apply a style sheet 18% 15% 22% 43% 1% 1% Indifferent




