
Effective User Stories
for

Agile Requirements
Mike Cohn

Mountain Goat Software
mike@mountaingoatsoftware.com

March 10, 2009
®

© 2003–2009 Mountain Goat Software®

Mike Cohn - background

® © 2003–2009 Mountain Goat Software®

1

2

® © 2003–2009 Mountain Goat Software®

• Software requirements is a communication
problem

What problem do stories address?

• Those who want the
software must
communicate with
those who will build
it

® © 2003–2009 Mountain Goat Software®

Balance is critical

• If either side dominates, the business loses

• If the business side dominates…

• …functionality and dates are mandated with little
regard for reality or whether the developers
understand the requirements

• If the developers dominate…

• …technical jargon replaces the language
of the business and developers lose the
opportunity to learn from listening

3

4

® © 2003–2009 Mountain Goat Software®

Resource allocation

• We need a way of working together so that
resource allocation becomes a shared problem

• Project fails when the problem of resource
allocation falls too far to one side

® © 2003–2009 Mountain Goat Software®

Responsibility for resource allocation

5

6

® © 2003–2009 Mountain Goat Software®

Imperfect schedules

• We cannot perfectly predict a software
schedule

• As users see the software, they come up with new
ideas

• Too many intangibles

• Developers have a notoriously hard time
estimating

• If we can’t perfectly predict a schedule, we
can’t perfectly say what will be delivered

® © 2003–2009 Mountain Goat Software®

So what do we do?

7

8

® © 2003–2009 Mountain Goat Software®

•What stories are
•User role modeling
•Writing stories
• INVEST in good stories
•What stories are not
•Why user stories

Agenda

® © 2003–2009 Mountain Goat Software®

Poor requirements are often listed as one
of the chief causes of project failure.
1. What is a bad requirements process?
2. What are some problems that result

from a bad requirements process?

Poor requirements

9

10

® © 2003–2009 Mountain Goat Software®

® © 2003–2009 Mountain Goat Software®

Ron Jeffries’ Three Cs

Source: XP Magazine 8/30/01, Ron Jeffries.

11

12

® © 2003–2009 Mountain Goat Software®

Samples from a travel website

so that I save time

booking trips I take

often.

® © 2003–2009 Mountain Goat Software®

“As a <user role>,
I want <goal>
so that <reason>.”

Use this template

A recommendation

13

14

® © 2003–2009 Mountain Goat Software®

Where are the details?

• As a user, I can cancel a reservation.

• Does the user get a full or partial refund?

• Is the refund to her credit card or is it site credit?

• How far ahead must the reservation be cancelled?

• Is that the same for all hotels?

• For all site visitors? Can frequent travelers cancel later?

• Is a confirmation provided to the user?

• How?

® © 2003–2009 Mountain Goat Software®

Details added in smaller sub-stories

15

16

® © 2003–2009 Mountain Goat Software®

Details as conditions of satisfaction
• The product owner’s conditions of satisfaction can be

added to a story

• These are essentially tests

® © 2003–2009 Mountain Goat Software®

A game development example

17

18

® © 2003–2009 Mountain Goat Software®

Techniques can be combined

• These approaches are not mutually exclusive

• Write stories at an appropriate level

• By the time it’s implemented, each story will
have conditions of satisfaction associated with
it

® © 2003–2009 Mountain Goat Software®

19

20

® © 2003–2009 Mountain Goat Software®

User roles

• Broaden the scope from looking at one user

• Allows users to vary by

• What they use the software for

• How they use the software

• Background

• Familiarity with the software / computers

• Used extensively in usage-centered design

Source: Software for Use by Constantine and Lockwood (1999).

® © 2003–2009 Mountain Goat Software®

Common attributes

21

22

® © 2003–2009 Mountain Goat Software®

Habbo Hotel
user roles

• Achievers

• Traditionals

• Creatives

• Rebels

• Loners

® © 2003–2009 Mountain Goat Software®

High net worth user roles
• Family steward

• Taking care of family money. Goals like children’s tuition
and passing on wealth. Open to estate planning. Typically
conservative.

• Phobic
• Don’t like investing and don’t understand it.

• Independent
• Wants the freedom of financial independence.

• Anonymous
• Extremely private, don’t want to disclose any

information. Very loyal after initial trust is gained.

23

24

® © 2003–2009 Mountain Goat Software®

More high net worth roles
• Mogul

• Seeks power, influence and control. Investing is another way to
show their importance.

• VIP
• Want prestige. Want investments to help buy possessions.

• Accumulator
• Live below their means and don’t show outward signs of

affluence.

• Gambler
• Invests for the excitement, drama, and performance results.

• Innovator
• Like new products, strategies, services. Often from a technical

background.

® © 2003–2009 Mountain Goat Software®

User role brainstorming

• Brainstorming meeting

• Customer, developers, anyone who understands a
product’s intended users

• Everyone grabs a stack of cards

• Write role names on cards

• As fast as possible and with no judgment

• No turns

• Place card on table

• Call out role name as you place it

25

26

® © 2003–2009 Mountain Goat Software®

Organize, consolidate, refine

® © 2003–2009 Mountain Goat Software®

User role brainstorming

27

28

® © 2003–2009 Mountain Goat Software®

Advantages of using roles

® © 2003–2009 Mountain Goat Software®

System and programmer users

29

30

® © 2003–2009 Mountain Goat Software®

® © 2003–2009 Mountain Goat Software®

The product backlog iceberg

Sprint

Release

Future
Releases

Priority

31

32

® © 2003–2009 Mountain Goat Software®

Stories, themes and epics
User Story
A description of desired
functionality told from the
perspective of the user or
customer.

Theme
A collection of related
user stories.

Epic
A large user story.

® © 2003–2009 Mountain Goat Software®

An example

Clearly an epic

Epics??

33

34

® © 2003–2009 Mountain Goat Software®

An example

® © 2003–2009 Mountain Goat Software®

Finally, add the Conditions
Of Satisfaction

35

36

® © 2003–2009 Mountain Goat Software®

Another example

Clearly an epic

Epics??

® © 2003–2009 Mountain Goat Software®

An example

37

38

® © 2003–2009 Mountain Goat Software®

Story-writing workshops

• Includes developers, users, customer, others

• Brainstorm to generate stories

• Goal is to write as many stories as possible

• Some will be “implementation ready”

• Others will be “epics”

• No prioritization at this point

® © 2003–2009 Mountain Goat Software®

Start with epics and iterate

39

40

® © 2003–2009 Mountain Goat Software®

Or do a mindmap

® © 2003–2009 Mountain Goat Software®

Another approach

• Walk through a low-fidelity (paper) user
interface

• Ask open-ended, context-free questions as you go:

• What will the users most likely want to do next?

• What mistakes could the user make here?

• What could confuse the user at this point?

• What additional information could the user need?

• Consider these questions for each user role

41

42

® © 2003–2009 Mountain Goat Software®

A story-writing workshop

Use this template

“As a <user role>, I want <goal>
so that <reason>.”

® © 2003–2009 Mountain Goat Software®

43

44

® © 2003–2009 Mountain Goat Software®

What makes a good story?

Thanks to Bill Wake for the acronym. See
www.xp123.com.

® © 2003–2009 Mountain Goat Software®

Independent
• Avoid introducing dependencies

• Leads to difficulty prioritizing and planning

- First story will take 3

days to develop

- It doesn’t matter

which is first

- Others will each take 1

day

45

46

® © 2003–2009 Mountain Goat Software®

Making stories independent

® © 2003–2009 Mountain Goat Software®

What about this approach?

•Sometimes

necessary

but not ideal

•Why?

47

48

® © 2003–2009 Mountain Goat Software®

Negotiable
•Stories are not contracts

• They do not need to include all details

• Leave some flexibility in some stories to be worked
out during the iteration

® © 2003–2009 Mountain Goat Software®

Which is more negotiable?

49

50

® © 2003–2009 Mountain Goat Software®

® © 2003–2009 Mountain Goat Software®

Valuable

• Stories must be valuable to either:

51

52

® © 2003–2009 Mountain Goat Software®

Stories valued by developers
• Should be rewritten to show the benefit to

users or customers

® © 2003–2009 Mountain Goat Software®

To change the structure
but not the behavior of
code.

Refactor

53

54

® © 2003–2009 Mountain Goat Software®

Estimatable

• Because stories are used in planning
• A story may not be estimatable if

® © 2003–2009 Mountain Goat Software®

Sized appropriately
• Small stories for the near future

• Epics for further out

• Stories are progressively refined as the time to do
them moves closer

• Two types of large stories

• Complex stories: Inherently large and cannot be
made smaller

• Compound stories: Multiple stories combined
into one

55

56

® © 2003–2009 Mountain Goat Software®

Compound stories

• An epic that comprises multiple shorter
stories

• Often hide a great number of assumptions

® © 2003–2009 Mountain Goat Software®

Splitting a compound story

57

58

® © 2003–2009 Mountain Goat Software®

Splitting a compound story

® © 2003–2009 Mountain Goat Software®

Testable
• Tests demonstrate that a story meets the

customer’s expectations

• Automate, automate, automate

59

60

® © 2003–2009 Mountain Goat Software®

® © 2003–2009 Mountain Goat Software®

User stories are not…

• IEEE 830 Software Requirements
Specifications

• “The system shall…”

• Use Cases

61

62

® © 2003–2009 Mountain Goat Software®

Problems with IEEE 830

• Time-consuming to write and read

• Tedious to read

• So readers skim or skip sections

• Assumes everything is knowable in advance

Feedback

® © 2003–2009 Mountain Goat Software®

All requirements are not equal

• “Designers fix a top-level concept based on
their initial understanding of a problem.”†

• “May produce a solution for only the first few
requirements they encounter.”‡

Sources: †Making Use by John M. Carroll (2000)
and ‡Technology and Change by D.A. Schon (1967).

63

64

® © 2003–2009 Mountain Goat Software®

What are we building?

1.The product shall have a gas engine.
2.The product shall have four wheels.

2.1.The product shall have a rubber tire
mounted to each wheel.

3.The product shall have a steering wheel.
4.The product shall have a steel body.

IEEE 830 Software Requirements Spec

Source: The Inmates Are Running the Asylum
by Alan Cooper, 1999.

® © 2003–2009 Mountain Goat Software®

What if we had stories instead?

65

66

® © 2003–2009 Mountain Goat Software®

Stories are not use cases

® © 2003–2009 Mountain Goat Software®

Stories are not use cases

2a The card is not a type accepted by the system.
2a1 System notifies the user to use a different card.

2b The card is expired
2b1 System notifies the user to use a different card.

3a The card has insufficient available credit.
3a1 System charges as much as it can to the

current card.
3b1 User is told about the problem and asked to

enter a second card; use case continues at 2.

Extensions

67

68

® © 2003–2009 Mountain Goat Software®

Differences: use cases / stories

• Scope

• Completeness

• Longevity

• Purpose
• Use cases

• Document agreement between customer and developers

• Stories
• Written to facilitate release and iteration planning

• Placeholders for future conversations

® © 2003–2009 Mountain Goat Software®

69

70

® © 2003–2009 Mountain Goat Software®

So why user stories?

• Shift focus from writing to talking

then

“You built what I

asked for, but it’s

not what I need.”

® © 2003–2009 Mountain Goat Software®

Words are imprecise

71

72

® © 2003–2009 Mountain Goat Software®

Another example

® © 2003–2009 Mountain Goat Software®

Additional reasons

• Stories are understandable

• Developers and customers understand them

• People are better able to remember events if they
are organized into stories†

• Support and encourage iterative development

• Can easily start with epics and disaggregate closer
to development time

†Bower, Black, and Turner. 1979. Scripts in Memory for Text.

73

74

® © 2003–2009 Mountain Goat Software®

Yet more reasons

• Stories are the right size for planning

• Stories support opportunistic development

• We design solutions by moving opportunistically
between top-down and bottom-up approaches†

• Stories support participatory design

†Guindon. 1990. Designing the Design Process.

® © 2003–2009 Mountain Goat Software®

75

76

® © 2003–2009 Mountain Goat Software®

Mike Cohn
mike@mountaingoatsoftware.com
www.mountaingoatsoftware.com

(720) 890 6110

77

