
An Overview of Agile
Estimating & Planning

Mike Cohn

March 17, 2004

My books and background
Programming for 20 years

Author of four programming
books

Past consulting to Viacom,
Fidelity Investments, Procter
& Gamble, NBC, United
Nations, Citibank, other
smaller companies

Founding member and
director of the Agile Alliance

Currently VP, Engineering
with Fast401k in Denver

Releases and iterations

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Release

Today’s agenda
Why traditional approaches fail
What to estimate

Ideal time
Magnitude / complexity

How to estimate
Planning

Releases
Adding a critical chain buffer

Why agile planning works

Why plans go wrong

1. Tasks are assumed to be
independent

2. Lateness is passed down the
schedule; earliness is not

3. The Student Syndrome

1. Task independence
Sum of five dice
Central Limit Theorem

Sum of a number of
independent samples from
any distribution is
approximately normally
distributed

This means that
some are bigger
some are small
but overall things average out

Does CLT apply to software?

Highly correlated tasks

CLT and software
The tasks on a software Gantt chart are not independent

Many tasks involve similar work; if one estimate is wrong
the others tend to be wrong
There may be systematic error in the estimates

“Jay Days”

Software estimates tend not to be normally distributed
When asked for a point estimate programmers respond
with the mode

2. Lateness is passed along the schedule

Task 3 starts:
LATE if 1, 2 or 4 is late
EARLY only if 2 and 4 are early, and resource is
available

Task 1

Task 2

Task 3

Task 4

3. Student syndrome

Definition
Starting a task at the last
possible moment that does not
preclude an on-time completion

Example Starting a term paper the night
before it’s due

What happens with student syndrome

Estimate is based on this

But we behave like this

Task Local Safety

Local Safety Task

Today’s agenda

Why traditional approaches fail

What to estimate
Ideal time

Magnitude / complexity

How to estimate

Planning
Releases

Adding a critical chain buffer

Ideal time

An estimate of how long something would take if:
It’s the only thing you work on

You have everything you need at hand when you
start

There are no interruptions

Calendar time vs. ideal time

Calendar time Monday has 8 hours
Each week has 40 hours

Time on task
Monday has

3 hours of meetings
1 hour of email
4 hours of programming
(time-on-task)

Ideal time

“How long will this take?”

March 1

TODAY

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 April 1 2 3 4

March 04

“Two weeks.”
Two calendar weeks or two weeks worth of
time on task?

Factors affecting ideal time
Vacations
Sick time
All-company meetings
Department meetings
Demos

Personnel issues
Phone calls
Special projects
Training
Email

Reviews & walk-throughs
Interviewing candidates
Spikes
Leaves of absence
Sabbaticals

Ideal time vs. calendar time

It’s easier to estimate in ideal time

It’s too hard to estimate directly in calendar time
Need to consider all the factors that affect
calendar time at the same time you’re estimating

But, there’s a problem

Whose ideal time? Yours? Mine?

How do we add
Your Ideal Time

to
My Ideal Time?

Experienced Senior Programmer Days

How?
Define an archetypal programmer and estimate
how long it will take her
I like an “Experienced Senior Programmer”

But it can vary and depends on the team

Why?
Estimates can be more honest

If questioned, “Oh, it wouldn’t take me that long.”

Bias toward insufficient estimates goes away
Estimates can be added and compared

Disadvantages of ideal time
Can’t add your ideal time to my ideal time

Without estimating in something like “Experienced
Senior Programmer” days
But it can be hard to estimate someone else’s
ideal time

Need to re-estimate whenever we get better or
when we know something new about a task
Developers may make an implicit conversion

“Two ideal days is about a week. I think I could do
this in a week. I’ll say it’s two ideal days.”

Advantages of ideal time

Very tangible and understandable
Easy to get started with

Straightforward to convert from ideal time to
calendar time

Magnitude
The “bigness” of a task
Influenced by

Complexity
Our current knowledge
How much of it there is

Relative values are what is important:

“A login screen is a 2.”
“A search feature is an 8.”

“A login screen is small.”
“A search feature is large.”

What are the magnitudes of these?

Develop 100 screens,
each with 1-2 fields

Code 1 screen with 200
fields on it

Remove the recursion
from the ABC class and

make it thread safe

Write a “Hello, World”
servlet

Problems with magnitude
Values must be meaningful and distinguishable

How do you tell a “67” from a “68”?

Eventually you need to convert an estimate of magnitude
into an estimate of duration

“We’ll be done in 8 mediums, 3 smalls and 4 larges.”

“We’ll be done in 43 Gummi Bears.”

Developers may make an implicit conversion
“Most 3s take a day, this seems like a day; I’ll say it’s a 3.”

Can feel very uncomfortable at first

Very hard to estimate initial velocity

Advantages to magnitude
Some developers find it much easier to say “this is like
that”
The abstractness can help developers from feeling
coerced into giving an estimate that meets an expected
deadline

“My boss wants this in two weeks, I guess I’ll say ‘two
weeks.’”

Can be done very quickly, once it’s familiar
Less need to re-estimate than ideal time

Something that used to take 1 ideal day might now take ½
ideal day (as the team improves)
Something that is “big” is still big; even though the team
may be faster

Story points

A story point is either:
1 ideal day

1 unit of measure for magnitude

What I do

Start with ideal time
It gives a team a nice foundation for the initial
stories

Helps them get started

I define “1 Story Point = 1 Ideal Day”

Gradually convert team to thinking more about
magnitude

This story is like that story

Stop talking about how long it will take

Today’s agenda
Why traditional approaches fail
What to estimate

Ideal time
Magnitude / complexity

How to estimate
Planning

Releases
Adding a critical chain buffer

Why agile planning works

Use the right units

Ideal time

Can you distinguish a 17-hour
task from an 18-hour task?
Can you distinguish a ½ day
from a 1 day task?

Magnitude
Can you distinguish a 17 from
an 18?
A ½ from a 1?

Use units that make sense, such as:
0, ½, 1, 2, 3, 5, 10, 20, 40
0, ½, 1, 2, 3, 5, 8, 13, 21, 34

State your assumptions

Single most-likely finish;
what many developers offer

But here’s 50/50

Conservative (90%)
is way out here

Give both 50% and 90% estimates

50% estimates
Remove all local safety: no “padding”

An estimate you should / will miss half the time

90% estimates
Not really a worst case

No lightning strikes or busses running over people

Keep in mind that you’ll even exceed this estimate
occasionally

Approaches to estimating

Gut feel

Analogy

Disaggregation

Wideband Delphi

Gut feel

Good as a reasonableness check

Analogy

Analogy
“This story is like that story, so its estimate is what
that story’s estimate was.”

Works especially well if baseline story has been
coded

Triangulate
Estimate by analogy to two different stories

Triangulation

Story 1

Story 3

Story 2

Story 4

Confirm estimates by comparing the story to multiple
other stories.

Group like-sized stories on table or whiteboard

Check a few stories in each direction

….….….….….….….

….….….….….….….

….….….….….….….

….….….….….….….

1

4

2

8

Are the 2s twice the
1s?

Are
the 8s
4x the

2s?

Are the 8s twice the
4s?

Disaggregation

Breaking a big story into littler stories or tasks

You know how long the smaller tasks take
So, disaggregating to something you know lets
you estimate something bigger you don’t know

Sometimes very useful

But disaggregating too far causes problems
Forgotten tasks

Summing lots of small errors can be big number

Wideband Delphi
An iterative approach to estimating
Steps
1. Identify small group of estimators and give them

stories to read before the meeting
2. Each estimator is given a deck of cards, each card

has a valid estimate written on it
3. A moderator reads a story and it’s discussed briefly
4. Each estimator selects a card that’s his 50% estimate
5. Cards are turned over so all can see them
6. Discuss differences (especially outliers)
7. Re-estimate until estimates converge
8. Use the highest value or repeat for a 90% estimate

Wideband Delphi—an example

44Sherri

42Ann

57Rafe

44Susan

Round 2Round 1Estimator

Anonymity of estimates
Boehm recommends doing estimates anonymously
Everyone submits estimates, gets written feedback
There are advantages

People speak more freely
Discussion won’t be dominated by a single strong
personality or the lead developer

But there are also disadvantages
Tends to take longer
Less communication

Goes against XP’s value of courage
My recommendation

No anonymity, but use your judgment

Today’s agenda
Why traditional approaches fail
What to estimate

Ideal time
Magnitude / complexity

How to estimate
Planning

Releases
Adding a critical chain buffer

Why agile planning works

What we’d like to do

Take a prioritized stack of user stories

Figure out how much we can do per iteration

And then know how many iterations it will take

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Different dimensions to prioritization

Technical

Risk that the story cannot be
completed as desired
Impact the story will have on
other stories if deferred

Customers /
Users

Desirability of the story to a
broad base of users
Desirability of the story to a small
number of important users
Cohesiveness of the story to
other stories.

Who wins

Customer wins—always

But need developer input in order to prioritize

The user can book a new
trip based on a previous
trip.

3—5 days

Developers are best at
identifying dependencies

between stories

Customer cannot prioritize
without knowing the cost of

the stories

Split stories with mixed priorities

Users can search for
magazine articles by author,
publication name, title, date,
or any combination of these.

Users can search for
magazine articles by author
and/or title.

Users can search for
magazine articles by
publication name, date or
any combination of these.

Risky stories vs. juicy stories

Agile is firmly in the camp of doing the “juicy bits”
first

But cannot totally ignore risk
If some stories are very risky, the developers
need to tell the customer

Infrastructural stories

Infrastructural stories are usually best assessed
by the risk of deferring them (but still doing them
later)

Be able to generate 50
stock chart images per
second.

Is this performance
achievable on targeted

hardware?

Can we still use Java or
should we do this natively?

What type of caching do
we need to achieve this?

How much can we do per iteration?

Velocity

Our best guess is that we can do next iteration
what we did last iteration

“Yesterday’s Weather” (Beck & Fowler)

But sometimes we don’t have a last iteration

Getting an initial velocity

Use historicals Great if you have them from a
similar project by the same team

Run an iteration

Great if you can do it
Not always viable, e.g.,

No team in place yet
Boss wants early estimate

Forecast
May not always be preferred
approach
But, you need it as a tool

Forecasting velocity from ideal time

Estimate each developer’s productivity relative to the
archetypal Experienced Senior Programmer used in the
estimates

Considerations
Programming skill

Domain knowledge

Availability to actual code

Vacation

Example: forecasting initial velocity

.4.3.2Clark

.7.7.6.5Vlade

1.01.0.9.8Chris

2.5

.2

.5

.5

Iteration 1

3.1

.3

.5

.6

Iteration 2

3.6

.4

.5

.7

Iteration 3

3.7Total

.4Randy

.5Ann

.7Susan

ThereafterDeveloper

This tells you how many ideal programmers you
have working per calendar day

Forecasting velocity from magnitude

Starting with the highest-priority story, select as
many stories as you think will fit in the first
iteration

Break each story into smaller tasks (< 1 calendar
day)

When the iteration feels full, stop and see how
many story points were brought in

That’s your guess at velocity

Release planning
We can’t add the 50% estimates together

That assumes everything goes smoothly

Overall schedule will be too short

50% 90% +

!=

50% 90% + 50% 90%

50% 50% 50%

Release planning
We can’t add the 90% estimates together

That assumes that everything goes wrong

Overall schedule will be too long

50% 90% +

!=

50% 90% + 50% 90%

50% 90% 50% 90% 50% 90%

The solution

We add the 50% estimates

And buffer the overall project, rather than the
tasks

50% 90% +

==

50% 90% + 50% 90%

50% 90%50% 50%

My trip to the airport

50% Estimate

Buffer to 90%

Time = 1:05

Time = 1:45

Total = 2:50 minutes

1 5

Find Keys

45 30

Drive to Airport

5 10

Park

7 30

Check in

7 30

Security

My trip with a project buffer

50% Estimate

Buffer

Time = 1:05

Time = 0:53

Total = 1:58

1

45

5

7

7

53

Was 2:50

A project buffer isn’t padding
Padding is extra time you don’t think you’ll need but
add to be safe

You will need the project buffer
Even with the project buffer you’re not guaranteed to
be done on time

I had about a 3% chance of making it to my flight in
65 minutes

1:05 53

%125.3%50%50%50%50%50 =××××

Would you call something that increases your odds
of success from 3% “padding”?

How long should the buffer be?
Simple rule

Use 50% of the unbuffered (50%) schedule

More sophisticated, usually better

() () ()awawaw nn−−− +++
222

2211 L

w = worst case

a = average case

Sample buffer calculation

272817Total

165Story 6

985Story 5

431Story 4

011Story 3

453Story 2

952Story 1

(90%—50%)290%50%Story

222.5172717 =+=+=Schedule

Full example of planning a release

1089200117Total

0………

453Story 2

952Story 1

(90%—50%)290%50%Story

150331171089117 =+=+

.4.3.2Clark

.7.7.6.5Vlade

1.01.0.9.8Chris

2.5

.2

.5

.5

Iteration 1

3.1

.3

.5

.6

Iteration 2

3.6

.4

.5

.7

Iteration 3

3.7Total

.4Randy

.5Ann

.7Susan

ThereafterDeveloper

Example, continued

125373.710Iteration 4

162373.710Iteration 5

9

10

10

Duration
(Days)

3.6

3.1

2.5

Daily
Velocity

32

31

25

Story Points
in iteration

88Iteration 3

56Iteration 2

25Iteration 1

Cumulative
Story Points

Iteration

Accumulate 150 Story Points
sometime during Iteration 5

Velocity estimates from
previous slide

Company
holiday

Communicating the estimate

When communicating the estimate to
management

Don’t talk about the project buffer
Don’t necessarily hide it

I include it in a document on the estimation approach,
rather than in the estimate itself

Clearly state your assumptions

Stress that it will be refined
Then refine it!

Not fair to “refine” it only with a big slip at the end

Why agile planning works

Why plans go wrong

1. Tasks are assumed to be
independent

2. Lateness is passed down the
schedule; earliness is not

3. The Student Syndrome

Why agile planning works

1. Tasks are assumed to
be independent

Stories (the main unit of
estimation) are largely
independent.

Why agile planning works

2. Lateness is passed
down the schedule;
earliness is not

No overall Gantt or PERT chart
Each day, each person picks what she’ll
do

Lateness doesn’t pass down an
agile plan
Earliness does pass down

Naturally, there are some dependencies
But these are limited with an agile
plan

Why agile planning works

No Gantt chart saying
what to do today and how
long to take
Increased visibility through
daily standup meetings
and pair programming

3. The Student
Syndrome

Additionally

Agile planning encourages
and enforces continuous re-
estimation and recalibration

For more on user stories

www.userstories.com
groups.yahoo.com/group/userstories

Where to go next?

www.mountaingoatsoftware.com/scrumScrum

www.agilealliance.comAgile in General

groups.yahoo.com/agileplanningAgile Planning

My contact information

mike@userstories.com
mike.cohn@computer.orgEmail

www.userstories.com Website

