
Improving On Traditional Release Burndown 

Charts
by Mike Cohn • 24 Comments

I want to use this month's blog posting to introduce a type of burndown (and burnup) chart that I 

find useful. I've been drawing this style of burndown chart for years and have coached many of 

my clients to do the same. Unfortunately, we've had to draw it either by hand or in tools like 

Visio and OmniGraffle because the agile tool vendors haven't (to my knowledge) hit on this idea 

yet. I'm hopeful that some of them will see this posting, decide this is a good visualization, and 

incorporate it into their products. The classic Scrum release burndown chart is good at showing 

whether a team will finish “on time” as can be seen in the following example burndown chart: 

A traditional release burndown chartImage not found or type unknown

A release burndown chart such as this one shows sprints on the horizontal axis and can show 

story points or ideal days on the vertical. It is updated once per sprint to show the team's net 

progress that sprint. A team's net progress is the amount of work they finished net of any 

changes in scope. So a team that completes 30 points of work but that has 10 points added to 

their product backlog will show net progress of 20. But while a traditional release burndown 

chart excels at showing whether a team is on pace to finishing on time, it is not very good at 

showing what will be included in that “on time” delivery.

To see this, imagine two teams that each start with 200 story points of work. The first team 

finishes twenty points of work for each of ten sprints. The second team is incompetent and 

rather than completing twenty points each sprint they drop twenty points of scope each sprint. 

The two burndown charts will be identical—perfect lines descending over ten sprints from 200 to 

0. At one level this is OK: the burndown chart shows whether a team will be finished (or by when 

the will be finished). The simplicity of the standard release burndown chart has much in its favor. 

It isn't hard, though, to extend a release burndown chart to also show what will be in the product 

by the final sprint. Look at the next figure, which is a hypothetical example of an eCommerce 

product.



A predictive release burndown chart

Image not found or type unknown

In this figure, you can see the burndown is tracked in the normal way through the end of the 

current sprint, the seventh. The company desires to release this product after the fourteenth two-

week sprint. The right side of the burndown chart shows the team's product backlog with the 

highest priority theme (“Returns”) at the top. This top block represents some “must-have” user 

stories related to returning purchased items. Below that is a theme for gift wrapping purchased 

items, followed by some “nice to have” aspects of returning items. At the bottom right is the 

Coupons theme. Extending out from the team's current position at the end of the seventh sprint 

are four lines. These lines represent the following:

1. The team's current position, drawn as a horizontal line from the current burndown position 

over to the product backlog. This tells us what is in the product so far. We can see that the 

mandatory return user stories and the gift wrap user stories are finished and that the team 

is partially into the nice-to-have return user stories.

 
2. A black, dashed line showing the team's most likely finish. This is the first of three trend 

lines meant to show the likely range of work the team might deliver. To draw a team's most 

likely finish use the team's long-term average velocity. You can define “long-term average 

velocity” in whatever way you want but my preference is to use the average velocity of the 

last 8-12 sprints. Pick the number of historical sprints that is most suitable for your team 

based on how long the sprints are and how long the team stays together.

 
3. A pessimistic forecast of the amount of functionality that may be delivered. I recommend 

forecasting this based on a team's worst-case but likely velocity. Calculate this by 

averaging the worst three or so velocities chosen among the same 8-12 iterations you 

looked back at to determine the team's long-term average velocity.

 
4. An optimistic forecast of the amount of functionality that may be delivered. Calculate this in 

the same was as in the pessimistic case but use the three (or so) best velocities of the 

team.

The figures in this blog are static images I've cut from a presentation. If you apply this technique 

/uploads/articles/PredictiveBurndownChart.jpg


for your team, the backlog items on the right should be clickable, allowing users to drill down into 

a product backlog theme to see specifically which items (typically user stories) make up the 

backlog. By producing a single chart that shows both a team's rate of progress (its burndown) 

and the product backlog, we have a single visualization that shows both when a team is likely to 

finish and what features will be in the product by that time. This makes is easier for product 

owners to make scope vs. schedule tradeoff decisions. Check back in a few weeks when I'll 

show an even more powerful technique for visualizing large product backlogs.

Posted: June 17, 2008

Tagged: product backlog, product owner, user stories, story points, velocity, metrics, release 

planning, sprint burndown chart

About the Author

Mike Cohn specializes in helping companies adopt and improve their use of agile 

processes and techniques to build extremely high-performance teams. He is the 

author of User Stories Applied for Agile Software Development, Agile Estimating 

and Planning, and Succeeding with Agile as well as the Better User Stories video 

course. Mike is a founding member of the Agile Alliance and Scrum Alliance and 

can be reached at hello@mountaingoatsoftware.com. If you want to succeed with 

agile, you can also have Mike email you a short tip each week.

http://www.betteruserstories.com
mailto:hello@mountaingoatsoftware.com

