
xix

Introduction

I felt guilty throughout much of the mid-1990s. I was working for a company
that was acquiring about one new company each year. Every time we’d buy a
new company I would be assigned to run their software development group.
And each of the acquired development groups came with glorious, beautiful,
lengthy requirements documents. I inevitably felt guilty that my own groups
were not producing such beautiful requirements specifications. Yet, my groups
were consistently far more successful at producing software than were the
groups we were acquiring.

I knew that what we were doing worked. Yet I had this nagging feeling that
if we’d write big, lengthy requirements documents we could be even more suc-
cessful. After all, that was what was being written in the books and articles I
was reading at the time. If the successful software development teams were
writing glorious requirements documents then it seemed like we should do the
same. But, we never had the time. Our projects were always too important and
were needed too soon for us to delay them at the start.

Because we never had the time to write a beautiful, lengthy requirements
document, we settled on a way of working in which we would talk with our
users. Rather than writing things down, passing them back and forth, and
negotiating while the clock ran out, we talked. We’d draw screen samples on
paper, sometimes we’d prototype, often we’d code a little and then show the
intended users what we’d coded. At least once a month we’d grab a representa-
tive set of users and show them exactly what had been coded. By staying close
to our users and by showing them progress in small pieces, we had found a way
to be successful without the beautiful requirements documents.

Still, I felt guilty that we weren’t doing things the way I thought we were sup-
posed to.

In 1999 Kent Beck’s revolutionary little book, Extreme Programming
Explained: Embrace Change, was released. Overnight all of my guilt went
away. Here was someone saying it was OK for developers and customers to talk
rather than write, negotiate, and then write some more. Kent clarified a lot of



xx INTRODUCTION

things and gave me many new ways of working. But, most importantly, he justi-
fied what I’d learned from my own experience.

Extensive upfront requirements gathering and documentation can kill a
project in many ways. One of the most common is when the requirements doc-
ument itself becomes a goal. A requirements document should be written only
when it helps achieve the real goal of delivering some software.

A second way that extensive upfront requirements gathering and documen-
tation can kill a project is through the inaccuracies of written language. I
remember many years ago being told a story about a child at bath time. The
child’s father has filled the bath tub and is helping his child into the water. The
young child, probably two or three years old, dips a toe in the water, quickly
removes it, and tells her father “make it warmer.” The father puts his hand into
the water and is surprised to find that, rather than too cold, the water is already
warmer than what his daughter is used to.

After thinking about his child’s request for a moment, the father realizes they
are miscommunicating and are using the same words to mean different things.
The child’s request to “make it warmer” is interpreted by any adult to be the
same as “increase the temperature.” To the child, however, “make it warmer”
meant “make it closer to the temperature I call warm.”

Words, especially when written, are a very thin medium through which to
express requirements for something as complex as software. With their ability
to be misinterpreted we need to replace written words with frequent conversa-
tions between developers, customers, and users. User stories provide us with a
way of having just enough written down that we don’t forget and that we can
estimate and plan while also encouraging this time of communication.

By the time you’ve finished the first part of this book you will be ready to
begin the shift away from rigorously writing down every last requirement
detail. By the time you’ve finished the book you will know everything necessary
to implement a story-driven process in your environment. This book is orga-
nized in four parts and two appendices.

• Part I: Getting Started—A description of everything you need to know to
get started writing stories today. One of the goals of user stories is to get
people talking rather than writing. It is the goal of Part I to get you talking
as soon as possible. The first chapter provides an overview of what a user
story is and how you’ll use stories. The next chapters in Part I provide
additional detail on writing user stories, gathering stories through user
role modeling, writing stories when you don’t have access to real end
users, and testing user stories. Part I concludes with a chapter providing
guidelines that will improve your user stories.



INTRODUCTION xxi

• Part II: Estimating and Planning—Equipped with a collection of user sto-
ries, one of the first things we often need to answer is “How long will it
take to develop?” The chapters of Part II cover how to estimate stories in
story points, how to plan a release over a three- to six-month time hori-
zon, how to plan an ensuing iteration in more detail, and, finally, how to
measure progress and assess whether the project is progressing as you’d
like.

• Part III: Frequently Discussed Topics—Part III starts by describing how
stories differ from requirements alternatives such as use cases, software
requirements specifications, and interaction design scenarios. The next
chapters in Part III look at the unique advantages of user stories, how to
tell when something is going wrong, and how to adapt the agile process
Scrum to use stories. The final chapter of Part III looks at a variety of
smaller issues such as whether to writes stories on paper note cards or in a
software system and how to handle nonfunctional requirements.

• Part IV: An Example—An extended example intended to help bring every-
thing together. If we’re to make the claim that developers can best under-
stand user’s needs through stories then it is important to conclude this
book with an extended story showing all aspects of user stories brought
together in one example.

• Part V: Appendices—User stories originate in Extreme Programming. You
do not need to be familiar with Extreme Programming in order to read
this book. However, a brief introduction to Extreme Programming is pro-
vided in Appendix A. Appendix B contains answers to the questions that
conclude the chapters.


