Agile Estimating and Planning

Mike Cohn - background

Imagine...

- That you're fed up with software development as a career
- And you decide to go into the landscaping business
- Your first job is moving this pile of rock from the front of my house to the back

© Mountain Goat Software, L

3

How might you estimate this?

- One way:
 - Look at the pile of rock and estimate how many wheelbarrow loads it represents
- After an hour, see how many wheelbarrow loads you've moved then extrapolate the total duration

I think that's 80 wheelbarrow loads
After an hour I've moved 20 loads
So, I'll be done in a total of 4 hours

Story points

- Probably the most commonly used estimating unit among agile teams today
 - Name is derived from agile teams commonly expressing requirements as "user stories"
- Based on a combination of the size and complexity of the work
- Unitless but numerically relevant estimates
 - A 10-point user story is expected to take twice as long as a 5-point user story

© Mountain Goat Software, LLC

Three key advantages

- Estimating in story points:
 - I. Forces the use of relative estimating
 - Studies have shown we're better at this[†]
 - 2. Focuses us on estimating the size, not the duration
 - We derive duration empirically by seeing how much we complete per iteration
 - 3. Puts estimates in units that we can add together
 - Time based estimates are not additive

[†]Lederer and Prasad, 1998. A Causal Model for Software Cost Estimating Error and Vicinanza et al., 1991. Software Effort Estimation: An Exploratory Study of Expert Performance.

10

Planning poker

- An iterative approach to estimating
- Steps
 - Each estimator is given a deck of cards, each card has a valid estimate written on it
 - Customer/Product owner reads a story and it's discussed briefly
 - Each estimator selects a card that's his or her estimate
 - Cards are turned over so all can see them
 - Discuss differences (especially outliers)
 - Re-estimate until estimates converge

Planning poker - an example					
	Estimator	Round I	Round 2	1	
	Susan	3	5		
	Vadim	8	5		
	Ann	2	5		
*	Chris	5	8		
XXX		© M	lountain Goat Softwar	e, LLC	

<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<section-header> Why planning poker works Support of the proving poker works of the provinges of t

Reduces likelihood of anchoring Control group • 456 hours • Given a product spec High anchor group • Given the same product spec Told the customer thinks 500 hours is a 555 hours reasonable estimate but that • The customer knows very little about the implications of his spec on the estimate You shouldn't let his number influence you Low anchor group • 99 hours Same as high but customer thinks 50 hours Source: How to avoid impact from irrelevant and misleading information on your cost estimates, Magne Jørgensen and Stein Grimstad, Simula Research Laboratory, Simula Research Labs Estimation Seminar, Oslo, Norway 2006. © Mountain Goat Software, LLC 19

 Extrapolate from velocity

 Assume:

 There are five

 prints left:

At our slowest velocity we'll finish here (5×36)
At our long-term average we'll finish here (5×36)
At current velocity we'll finish here (5×36)

Fixed-date planning: an example

Desired release date	30 June	
Today's Date	l January	
Number of sprints	6 (monthly)	
Low velocity	15	
High velocity	20	
À		

