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• Software requirements is a communication 
problem

What problem do stories address?

• Those who want the 
software must 
communicate with 
those who will build 
it
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Balance is critical

• If either side dominates, the business loses

• If the business side dominates…

• …functionality and dates are mandated with little 
regard for reality or whether the developers 
understand the requirements

• If the developers dominate…

• …technical jargon replaces the language
of the business and developers lose the 
opportunity to learn from listening
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Resource allocation

• We need a way of working together so that 
resource allocation becomes a shared problem

• Project fails when the problem of resource 
allocation falls too far to one side

© Mountain Goat Software, LLC

Responsibility for resource allocation
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Imperfect schedules 

• We cannot perfectly predict a software 
schedule

• As users see the software, they come up with new 
ideas 

• Too many intangibles

• Developers have a notoriously hard time 
estimating

• If we can’t perfectly predict a schedule, we 
can’t perfectly say what will be delivered
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So what do we do?
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What stories are

Users and user roles

Gathering stories

INVEST in good stories

Why user stories

Today’s agenda
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Poor requirements are often listed as one 
of the chief causes of project failure. 
1. What are some problems you can 

attribute to a poor requirements 
process?

2. What constitutes a poor requirements 
process?

Poor requirements
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Ron Jeffries’ Three Cs

Source: XP Magazine 8/30/01, Ron Jeffries.
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Samples from a travel website

so that I save time 

booking trips I take 

often.
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Where are the details?

• As a user, I can cancel a reservation.

• Does the user get a full or partial refund?

• Is the refund to her credit card or is it site credit?

• How far ahead must the reservation be cancelled?

• Is that the same for all hotels?

• For all site visitors? Can frequent travelers cancel later?

• Is a confirmation provided to the user?

• How?
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Details as conditions of satisfaction

• The product owner’s conditions of satisfaction can be 
added to a story

• These are essentially tests
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Details added in smaller sub-stories
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Techniques can be combined

• These approaches are not mutually exclusive

• Write stories at an appropriate level

• By the time it’s implemented, each story will 
have conditions of satisfaction associated with 
it
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The product backlog iceberg

Sprint

Release

Future
Releases

Priority
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User stories on the product backlog
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An example

An epic;
weeks to implement

Implementation-size stories;
days to implement

19

20



© Mountain Goat Software, LLC

An example
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Augment as necessary

• User stories don’t have to be the end-all, be-all 
of requirements

• Augment them with written documentation as 
appropriate

• Business rules

• Data dictionaries

• Use cases

• Examples of inputs and expected result
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“The User”

• Many projects mistakenly assume there’s only 
one user: 

• “The user”

• Write all stories from one user’s perspective

• Assume all users have the same goals

• Leads to missing stories
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User roles

• Broaden the scope from looking at one user

• Allows users to vary by

• What they use the software for

• How they use the software

• Background

• Familiarity with the software / computers

• Used extensively in usage-centered design
Source: Software for Use by 
Constantine and Lockwood (1999).
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Common attributes
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User role brainstorming

• Brainstorming meeting

• Customer, developers, anyone who understands a 
product’s intended users

• Everyone grabs a stack of cards

• Write role names on cards

• As fast as possible and with no judgment

• No turns

• Place card on table

• Call out role name as you place it
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User role brainstorming
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User role modeling steps
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Organize the initial set

• Arrange cards spatially to indicate overlapping 
and similar roles

• Use any arrangement rules you want
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Consolidate roles

• Discuss what is meant by each card

• Arrange cards spatially to indicate overlapping 
and similar roles

• Use any arrangement rules you want

• Look for cards to

• Combine

• Replace with a more generic/different card

• Eliminate cards that are unimportant to the 
success of the product
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Consolidating–an example
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Organize and consolidate
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Advantages of using roles
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System and programmer users
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Three variations

• Think of who might abuse the system
• Write stories to prevent these abuses

Abusers

• Think of someone unlikely to use your product
• What might they want?

Extreme characters

• Make a role real with a name, photo and so on

Personas
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Techniques for gathering stories
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Questionnaires

• Good technique for learning more about 
stories you already have

• If you have a large user base, great way to get 
information to help prioritize stories

• Not effective as a primary means of trawling 
for new stories
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Observation

• Great way to pick up insights

• Two approaches

• Just observe, with or without user’s knowledge

• Have the user demonstrate to a group how she 
uses the software
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Observation example

• Stated need:

• “We need a large text field to summarize.”

• Observed need:

• Have the system record the user’s choices
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Interviews

• Default approach taken by many teams

• Selection of interviewees is critical

• Try to interview as many user roles as possible

• Cannot just ask “So whaddaya want?”

• Most users are not adept at understanding their 
true needs
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My context isn’t your context
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A horrible question

• A problem:

• The question is closed

• {Yes | No}
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We can do better

• It’s open

• Full range of answers

• But it has too much context
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The best way to ask

• We want to ask questions that are

• Open-ended

• Context-free
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It’s my problem, I know the solution

• Having a problem does not uniquely qualify 
you to solve it

• “It hurts when I go like this…”

48



© Mountain Goat Software, LLC

We need to stop asking users

• Since users don’t know how to solve their 
problems, we need to stop asking

• We need to involve them instead
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Story-writing workshops

• Includes developers, users, customer, others

• Brainstorm to generate stories 

• Goal is to write as many stories as possible

• Some will be “implementation ready”

• Others will be “epics”

• No prioritization at this point
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Start with epics and iterate
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A story-writing workshop

A tip:

Try this template:
“As a <user role>, I want 
<goal> so that <reason>.”
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What makes a good story?

Thanks to Bill Wake for the acronym. See 
www.xp123.com.
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Independent
• Avoid introducing dependencies

• Leads to difficulty prioritizing and planning

- First story will take 3 

days to develop

- It doesn’t matter 

which is first

- Others will each take 1 

day
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Making stories independent
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What about this approach?

•Sometimes 

necessary 

but not ideal

•Why?
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Another example
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Negotiable
•Stories are not contracts

•Do not need to include all details

• Too many details give the impressions of

• false precision or completeness

• that there’s no need to talk further

•Need some flexibility so that we can adjust how 
much of the story gets implemented

• If the card is contract then it needs to be estimated like 
a contract

• Not all stories need to be negotiable, but some do

59

© Mountain Goat Software, LLC

Which is more negotiable?
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Valuable

• Stories must be valuable to either:
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Stories valued by developers

• Should be rewritten to show the benefit
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To change the structure 
but not the behavior of 
code.

Refactor
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Estimatable

• Because stories are used in planning
• A story may not be estimatable if
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Sized appropriately
• Small stories for the near future

• Epics for further out

• Large stories (epics) are

• Hard to estimate

• Hard to plan

• Won’t fit in a single iteration

• Two types of large story

• Complex story

• Compound story
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Complex stories

• A story that is inherently large and cannot 
easily be disaggregated into constituent stories

• Very rare

• Some stories look complex because we don’t 
know enough

• Use a spike in those situations

• First iteration: acquire knowledge

• Second iteration: do the work
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Compound stories

• An epic that comprises multiple shorter 
stories

• Often hide a great number of assumptions
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Splitting a compound story
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Splitting a compound story
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More advice on splitting stories
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Testable
• Tests demonstrate that a story meets the 

customer’s expectations

• Automate, automate, automate
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then

“You built what I 

asked for, but it’s 

not what I need.”
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Words are imprecise
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Examples
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What are we building?
1.The product shall have a gas engine.
2.The product shall have four wheels.

2.1.The product shall have a rubber tire 
mounted to each wheel.

3.The product shall have a steering wheel.
4.The product shall have a steel body.
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mike@mountaingoatsoftware.com

www.mountaingoatsoftware.com

(720) 890-6110 (office)

(303) 810-2190 (mobile)

Mike Cohn contact info
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