
Effective User Stories
for Agile Requirements

Mike Cohn
August 14, 2007

Mike Cohn - background

© Mountain Goat Software, LLC

1

2



© Mountain Goat Software, LLC

• Software requirements is a communication 
problem

What problem do stories address?

• Those who want the 
software must 
communicate with 
those who will build 
it

© Mountain Goat Software, LLC

Balance is critical

• If either side dominates, the business loses

• If the business side dominates…

• …functionality and dates are mandated with little 
regard for reality or whether the developers 
understand the requirements

• If the developers dominate…

• …technical jargon replaces the language
of the business and developers lose the 
opportunity to learn from listening

3

4



© Mountain Goat Software, LLC

Resource allocation

• We need a way of working together so that 
resource allocation becomes a shared problem

• Project fails when the problem of resource 
allocation falls too far to one side

© Mountain Goat Software, LLC

Responsibility for resource allocation

5

6



© Mountain Goat Software, LLC

Imperfect schedules 

• We cannot perfectly predict a software 
schedule

• As users see the software, they come up with new 
ideas 

• Too many intangibles

• Developers have a notoriously hard time 
estimating

• If we can’t perfectly predict a schedule, we 
can’t perfectly say what will be delivered

© Mountain Goat Software, LLC

So what do we do?

7

8



© Mountain Goat Software, LLC

What stories are

Users and user roles

Gathering stories

INVEST in good stories

Why user stories

Today’s agenda

© Mountain Goat Software, LLC

9

10



© Mountain Goat Software, LLC

Poor requirements are often listed as one 
of the chief causes of project failure. 
1. What are some problems you can 

attribute to a poor requirements 
process?

2. What constitutes a poor requirements 
process?

Poor requirements

© Mountain Goat Software, LLC

Ron Jeffries’ Three Cs

Source: XP Magazine 8/30/01, Ron Jeffries.

11

12



© Mountain Goat Software, LLC

Samples from a travel website

so that I save time 

booking trips I take 

often.

© Mountain Goat Software, LLC

Where are the details?

• As a user, I can cancel a reservation.

• Does the user get a full or partial refund?

• Is the refund to her credit card or is it site credit?

• How far ahead must the reservation be cancelled?

• Is that the same for all hotels?

• For all site visitors? Can frequent travelers cancel later?

• Is a confirmation provided to the user?

• How?

13

14



© Mountain Goat Software, LLC

Details as conditions of satisfaction

• The product owner’s conditions of satisfaction can be 
added to a story

• These are essentially tests

© Mountain Goat Software, LLC

Details added in smaller sub-stories

15

16



© Mountain Goat Software, LLC

Techniques can be combined

• These approaches are not mutually exclusive

• Write stories at an appropriate level

• By the time it’s implemented, each story will 
have conditions of satisfaction associated with 
it

© Mountain Goat Software, LLC

The product backlog iceberg

Sprint

Release

Future
Releases

Priority

17

18



© Mountain Goat Software, LLC

User stories on the product backlog

© Mountain Goat Software, LLC

An example

An epic;
weeks to implement

Implementation-size stories;
days to implement

19

20



© Mountain Goat Software, LLC

An example

© Mountain Goat Software, LLC

Augment as necessary

• User stories don’t have to be the end-all, be-all 
of requirements

• Augment them with written documentation as 
appropriate

• Business rules

• Data dictionaries

• Use cases

• Examples of inputs and expected result

21

22



© Mountain Goat Software, LLC

© Mountain Goat Software, LLC

“The User”

• Many projects mistakenly assume there’s only 
one user: 

• “The user”

• Write all stories from one user’s perspective

• Assume all users have the same goals

• Leads to missing stories

23

24



© Mountain Goat Software, LLC

User roles

• Broaden the scope from looking at one user

• Allows users to vary by

• What they use the software for

• How they use the software

• Background

• Familiarity with the software / computers

• Used extensively in usage-centered design
Source: Software for Use by 
Constantine and Lockwood (1999).

© Mountain Goat Software, LLC

Common attributes

25

26



© Mountain Goat Software, LLC

User role brainstorming

• Brainstorming meeting

• Customer, developers, anyone who understands a 
product’s intended users

• Everyone grabs a stack of cards

• Write role names on cards

• As fast as possible and with no judgment

• No turns

• Place card on table

• Call out role name as you place it

© Mountain Goat Software, LLC

User role brainstorming

27

28



© Mountain Goat Software, LLC

© Mountain Goat Software, LLC

User role modeling steps

29

30



© Mountain Goat Software, LLC

Organize the initial set

• Arrange cards spatially to indicate overlapping 
and similar roles

• Use any arrangement rules you want

© Mountain Goat Software, LLC

Consolidate roles

• Discuss what is meant by each card

• Arrange cards spatially to indicate overlapping 
and similar roles

• Use any arrangement rules you want

• Look for cards to

• Combine

• Replace with a more generic/different card

• Eliminate cards that are unimportant to the 
success of the product

31

32



© Mountain Goat Software, LLC

Consolidating–an example

© Mountain Goat Software, LLC

Organize and consolidate

33

34



© Mountain Goat Software, LLC

Advantages of using roles

© Mountain Goat Software, LLC

System and programmer users

35

36



© Mountain Goat Software, LLC

Three variations

• Think of who might abuse the system
• Write stories to prevent these abuses

Abusers

• Think of someone unlikely to use your product
• What might they want?

Extreme characters

• Make a role real with a name, photo and so on

Personas

© Mountain Goat Software, LLC

37

38



© Mountain Goat Software, LLC

Techniques for gathering stories

© Mountain Goat Software, LLC

Questionnaires

• Good technique for learning more about 
stories you already have

• If you have a large user base, great way to get 
information to help prioritize stories

• Not effective as a primary means of trawling 
for new stories

39

40



© Mountain Goat Software, LLC

Observation

• Great way to pick up insights

• Two approaches

• Just observe, with or without user’s knowledge

• Have the user demonstrate to a group how she 
uses the software

41

© Mountain Goat Software, LLC

Observation example

• Stated need:

• “We need a large text field to summarize.”

• Observed need:

• Have the system record the user’s choices

42

© Mountain Goat Software, LLC

Interviews

• Default approach taken by many teams

• Selection of interviewees is critical

• Try to interview as many user roles as possible

• Cannot just ask “So whaddaya want?”

• Most users are not adept at understanding their 
true needs

43

© Mountain Goat Software, LLC

My context isn’t your context

44



© Mountain Goat Software, LLC

A horrible question

• A problem:

• The question is closed

• {Yes | No}

45

© Mountain Goat Software, LLC

We can do better

• It’s open

• Full range of answers

• But it has too much context

46

© Mountain Goat Software, LLC

The best way to ask

• We want to ask questions that are

• Open-ended

• Context-free

47

© Mountain Goat Software, LLC

It’s my problem, I know the solution

• Having a problem does not uniquely qualify 
you to solve it

• “It hurts when I go like this…”

48



© Mountain Goat Software, LLC

We need to stop asking users

• Since users don’t know how to solve their 
problems, we need to stop asking

• We need to involve them instead

49

© Mountain Goat Software, LLC

Story-writing workshops

• Includes developers, users, customer, others

• Brainstorm to generate stories 

• Goal is to write as many stories as possible

• Some will be “implementation ready”

• Others will be “epics”

• No prioritization at this point

50

© Mountain Goat Software, LLC

Start with epics and iterate

51

© Mountain Goat Software, LLC

A story-writing workshop

A tip:

Try this template:
“As a <user role>, I want 
<goal> so that <reason>.”

52



© Mountain Goat Software, LLC

53

© Mountain Goat Software, LLC

What makes a good story?

Thanks to Bill Wake for the acronym. See 
www.xp123.com.

54

© Mountain Goat Software, LLC

Independent
• Avoid introducing dependencies

• Leads to difficulty prioritizing and planning

- First story will take 3 

days to develop

- It doesn’t matter 

which is first

- Others will each take 1 

day

55

© Mountain Goat Software, LLC

Making stories independent

56



© Mountain Goat Software, LLC

What about this approach?

•Sometimes 

necessary 

but not ideal

•Why?

57

© Mountain Goat Software, LLC

Another example

58

© Mountain Goat Software, LLC

Negotiable
•Stories are not contracts

•Do not need to include all details

• Too many details give the impressions of

• false precision or completeness

• that there’s no need to talk further

•Need some flexibility so that we can adjust how 
much of the story gets implemented

• If the card is contract then it needs to be estimated like 
a contract

• Not all stories need to be negotiable, but some do

59

© Mountain Goat Software, LLC

Which is more negotiable?

60



© Mountain Goat Software, LLC

61

© Mountain Goat Software, LLC

Valuable

• Stories must be valuable to either:

62

© Mountain Goat Software, LLC

Stories valued by developers

• Should be rewritten to show the benefit

63

© Mountain Goat Software, LLC

To change the structure 
but not the behavior of 
code.

Refactor

64



© Mountain Goat Software, LLC

Estimatable

• Because stories are used in planning
• A story may not be estimatable if

65

© Mountain Goat Software, LLC

Sized appropriately
• Small stories for the near future

• Epics for further out

• Large stories (epics) are

• Hard to estimate

• Hard to plan

• Won’t fit in a single iteration

• Two types of large story

• Complex story

• Compound story

66

© Mountain Goat Software, LLC

Complex stories

• A story that is inherently large and cannot 
easily be disaggregated into constituent stories

• Very rare

• Some stories look complex because we don’t 
know enough

• Use a spike in those situations

• First iteration: acquire knowledge

• Second iteration: do the work

67

© Mountain Goat Software, LLC

Compound stories

• An epic that comprises multiple shorter 
stories

• Often hide a great number of assumptions

68



© Mountain Goat Software, LLC

Splitting a compound story

69

© Mountain Goat Software, LLC

Splitting a compound story

70

© Mountain Goat Software, LLC

More advice on splitting stories

71

© Mountain Goat Software, LLC

Testable
• Tests demonstrate that a story meets the 

customer’s expectations

• Automate, automate, automate

72



© Mountain Goat Software, LLC

73

© Mountain Goat Software, LLC

then

“You built what I 

asked for, but it’s 

not what I need.”

74

© Mountain Goat Software, LLC

Words are imprecise

75

© Mountain Goat Software, LLC

Examples

76



© Mountain Goat Software, LLC

77

© Mountain Goat Software, LLC

What are we building?
1.The product shall have a gas engine.
2.The product shall have four wheels.

2.1.The product shall have a rubber tire 
mounted to each wheel.

3.The product shall have a steering wheel.
4.The product shall have a steel body.

78

© Mountain Goat Software, LLC

mike@mountaingoatsoftware.com

www.mountaingoatsoftware.com

(720) 890-6110 (office)

(303) 810-2190 (mobile)

Mike Cohn contact info

79




