
1

Effective User Stories
for
Agile Software Development

Mike Cohn
March 15, 2004

My books and background
Programming for 20 years

Author of four programming
books

Past consulting to Viacom,
Fidelity Investments, Procter
& Gamble, NBC, United
Nations, Citibank, other
smaller companies
Founding member and
director of the Agile Alliance
Currently VP, Engineering
with Fast401k in Denver

2

Today’s agenda
What are user stories?

Why user stories?
User role modeling
Trawling for stories
INVEST in good stories
Guidelines for writing good stories
Why plans go wrong
Estimating
Planning
Why agile planning works

Ron Jeffries’ Three Cs
Stories are traditionally
written on note cards.
Cards may be annotated
with estimates, notes, etc.

Card

Details behind the story
come out during
conversation with customer

Conversation

Acceptance tests confirm
the story was coded
correctly

Confirmation

3

Samples – Travel Reservation System

A user can make a hotel
reservation.

A user can cancel a
reservation.

Users can see photos of the
hotels.

Users can restrict searches
so they only see hotels with
available rooms.

Where are the details?
A user can make a hotel reservation.

Does she have to enter a credit card?
If so, what cards are accepted?
Is the charge applied immediately?

How can the user search for the hotel?
Can she search by city?
By quality rating?
By price range?
By type of room?

What information is shown for each room?
Can users make special requests, such as for a crib?

4

Details added in smaller “sub-”stories

A user can make a
hotel reservation.

A room can be reserved
with a credit card.

A user can view detailed
information about a

hotel.

A user can search for a
hotel. Search fields

include city, price range
and availability.

Details added as tests
Tests are written on the back of a story card

Can be used to express additional details and expectations

• Try it with a valid Visa then a valid MasterCard.
• Enter card numbers that are missing a digit,

have an extra digit and have two transposed
digits.

• Try it with a card with a valid number but that
has been cancelled.

• Try it with a card expiration date in the past.

A user can make a hotel reservation.

5

So, why user stories?

“You built what I asked for, but it’s not what I
need.”

thenIf requirements
are written down

The user will get
what she wants

At best, she’ll get
what was written

1. Shift focus from writing to talking

Words are imprecise

(Soup or Salad) and Bread
(Soup) or (Salad and Bread)

Entrée comes
with soup or salad

and bread.

6

Actual examples

The user can enter a
name. It can be 127
characters.

Must the user enter a
name?
Can it be other than 127
chars?

The system should
prominently display a
warning message
whenever the user
enters invalid data.

What does should mean?
What does prominently
display mean?
Is invalid data defined
elsewhere?

Words have multiple meanings
Bison intimidate bison.Buffalo buffalo buffalo.

Bison intimidate bison
from Buffalo.

Buffalo buffalo Buffalo
buffalo.

Bison intimidated by
bison intimidate bison.
Bison from Buffalo
intimidate bison.

Buffalo buffalo buffalo
buffalo.

7

Additional reasons
Stories are comprehensible

Developers and customers understand them
People are better able to remember events if they
are organized into stories†

Stories are the right size for planning
Support and encourage iterative development

Can easily start with epics and disaggregate
closer to development time

†Bower, Black, and Turner. 1979.
Scripts in Memory for Text.

Yet more reasons
Stories support opportunistic development

We design solutions by moving opportunistically
between top-down and bottom-up approaches†

Stories support participatory design
Participatory design

The users of the system become part of the team
designing the behavior of the system

Empirical design
Designers of the new system make decisions by
studying prospective users in typical situations

†Guindon. 1990. Designing
the Design Process.

8

Today’s agenda
What are user stories?

Why user stories?
User role modeling
Trawling for stories
INVEST in good stories
Guidelines for writing good stories
Why plans go wrong
Estimating
Planning
Why agile planning works

“The User”
Many projects mistakenly assume there’s only
one user:

“The user”
Write all stories from one user’s perspective
Assume all users have the same goals
Leads to missing stories

9

Travel Site—Who’s the user?

Jim

Frequent flier who
flies every week but
always to the same

place

Laura

Wants to schedule
her family’s annual

vacation

Dominic

Hotel chain Vice
President; wants to

monitor reservations

Howard

Mary’s assistant;
books her

reservations

Mary

Frequent flier who
never knows where

she’ll be

User roles
Broaden the scope from looking at one user
Allows users to vary by

What they use the software for
How they use the software
Background
Familiarity with the software / computers

Used extensively in usage-centered design
Definition

A user role is a collection of defining attributes that
characterize a population of users and their intended
interactions with the system.

Source: Software for Use by
Constantine and Lockwood (1999).

10

Common attributes

Jim

Frequent flier who
flies every week but
always to the same

place

Laura

Wants to schedule
her family’s annual

vacation

Dominic

Hotel chain Vice
President; wants to

monitor reservations

Howard

Mary’s assistant;
books her

reservations

Mary

Frequent flier who
never knows where

she’ll be

Frequent Flier

Scheduler

Infrequent
Vacation Planner

Insider
Repeat Traveler

User role modeling
Identify attributes that distinguish

one user role from another

Level of proficiency
with this software

General goals for
using the software

How often the
software will be

used

Level of domain
expertise

General level of
computer

proficiency

11

Document the user role

User Role: Infrequent Vacation Planner
Not particularly computer-savvy but quite adept
at using the web. Will use the software infrequently
but intensely (perhaps 5 hours to research and
plan a trip). Values richness of experience (lots of
content) over speed. But, software must be easy
to learn and also easily recalled months later.

Personas
A central element of Alan Cooper’s interaction
design†

A persona is an imaginary representation of a
user role
A natural extension to user roles
Generally, avoid picking personas who are real
users

†The Inmates are Running the Asylum
by Alan Cooper (1999).

12

Add details to each persona
Likes, dislikes
When, where, why
Model and make of car
Job

Not “is a florist” but “works as a florist at Lake
Park Florist”)

Goals
Not “planning a vacation but “planning the family
vacation to Yellowstone”

A sample persona
Jim lives in four bedroom house in a nice suburb north
of Chicago. However, he works as a vice president of
marketing in Sacramento, California. Three weeks out
of every four he flies from Chicago to Sacramento on
Monday morning and then flies home on Friday. The
company lets him work every fourth week out of his
home. Jim schedules his own flights, usually a month
or more in advance. He’s partial to United Airlines but
is always on the lookout for bargain fares so that the
company will allow him to continue to live in Chicago.
Jim quickly learns most software but becomes very
impatient when he finds a bug or when a website is
slow.

13

Using roles and personas
Start thinking of the software as solving the
needs of real people
Avoid saying “the user” and instead say

“A Frequent Flier…”
“A Repeat Traveler…”
“Jim…”

Exercise

1) What roles are there?
2) Which roles are the most important to

satisfy?
3) Which would you extend into personas?

We have been asked to develop a new job posting
and search site.

14

Today’s agenda
What are user stories?

Why user stories?
User role modeling
Trawling for stories
INVEST in good stories
Guidelines for writing good stories
Why plans go wrong
Estimating
Planning
Why agile planning works

Gathering stories
Common metaphors for requirements are wrong

“Eliciting requirements”
“Capturing requirements”

These metaphors imply
Users know the requirements but don’t want to tell
us
Requirements need to be locked up once
“captured”

15

The proper metaphor
Trawling† for requirements

Trawl: “sift through as part of a search” (OAD)
Metaphor captures these aspects:

Requirements can be captured with different sized
nets
Requirements change, mature, possibly die
Skill is a factor

†Mastering the Requirements Process
by Suzanne and James Robertson,
1999.

A little is enough, or is it?
Agile processes acknowledge that we cannot
trawl with such a fine net that we can write all the
user stories upfront
However,

This doesn’t mean we shouldn’t write as many as
we can

16

Techniques for trawling for user stories

User interviews

Questionnaires

Observation

Story-writing
workshops

Interviews
Default approach taken by many teams
Selection of interviewees is critical

Try to interview as many user roles as possible
Cannot just ask “So whaddaya want?”

Most users are not adept at understanding their
true needs
Having a problem does not uniquely qualify you
for knowing how to solve it

17

Open-ended and context-free questions
“Would you like it in a browser?”
Two problems:

A closed-ended question
Has no context

Instead ask:
“Would you like it in a browser rather than as a native
Windows application even if it means reduced
performance, a poorer overall user experience, and
less interactivity?”

Still, that question can be improved
“What would you be willing to give up in order to have it
in a browser?”

Questionnaires
Good technique for learning more about stories
you already have
If you have a large user base, great way to get
information to help prioritize stories
Not effective as a primary means of trawling for
new stories

18

Observation
Great way to pick up insights
Two approaches

Just observe, with or without user’s knowledge
Have the user demonstrate to a group how she
uses the software

Example
Stated need:

“We need a large text field to summarize.”
Observed need:

Have the system record the user’s choices

Story-writing workshops
Includes developers, users, customer, others
Goal is to write as many stories as possible

Focus on quantity, not quality
No prioritization at this point

Uses low-fidelity prototyping and brainstorming
techniques

19

A low-fidelity prototype

Home Page
News

Hot Deals
Search Fields

Hotel Results
List of hotels

Blurb about each

Hotel Details
Info about hotel

Map
Local attractions

News

Weather
Hot Deal Details

Location info
Weather

Low-fidelity prototyping
Use paper, note cards, white board, big Post-its
Prototype is of components or areas within the
application, not of actual screens

Hotel Results could be on Home Page or be a
separate page

Doesn’t require knowledge of how screens will
look
Throw it away a day or two later
Works better to go depth-first

20

Creating the low-fidelity prototype
Start with an empty box:

“Here’s the main screen in the system”
Ask open-ended, context-free questions as
you go:

What will the users most likely want to do
next?
What mistakes could the user make here?
What could confuse the user at this point?
What additional information could the user
need?

Consider these questions for each user role

Exercise

1) Write some stories, based on the user roles
for our job posting and search site.

21

Today’s agenda
What are user stories?

Why user stories?
User role modeling
Trawling for stories
INVEST in good stories
Guidelines for writing good stories
Why plans go wrong
Estimating
Planning
Why agile planning works

What makes a good story?

Independent

INVEST

Negotiable

Valuable

Estimatable

Small

Testable
Thanks to Bill Wake for the acronym.
See www.xp123.com.

22

Independent
Avoid introducing dependencies

Leads to difficulty prioritizing and planning

A company can pay
for a job posting
with a Visa card.

?

A company can pay
for a job posting
with a MasterCard.

?

A company can pay
for a job posting
with an AmEx card.

?

The first of these stories
will take 3 days to
develop

It doesn’t matter
which is first

The others will take 1
day

Making stories independent

A customer can pay with a credit card.Combine the stories

Split across a
different dimension

A customer can pay with one type of
credit card.
A customer can pay with two other
types of credit cards.

3 days if first; 1 otherwiseWrite two estimates
and move on

23

Negotiable
Stories are not

Written contracts
Requirements the software must fulfill

Do not need to include all details
Too many details give the impressions of

false precision or completeness
that there’s no need to talk further

Need some flexibility so that we can adjust how much of
the story gets implemented

If the card is contract then it needs to be estimated like a
contract

Is this story negotiable?

A company can pay for a job posting with a credit
card.

Note: Accept Visa, MasterCard, and American
Express. Consider Discover. On purchases over
$100, ask for card ID number from back of card. The
system can tell what type of card it is from the
first two digits of the card number. The system can
store a card number for future use. Collect the
expiration month and date of the card.

24

How about this one?
A company can pay for a job posting with a credit
card.

Note: Will we accept Discover cards?
Note for UI: Don’t have a field for card type (it can
be derived from first two digits on the card).

Valuable
Stories must be valuable to either:

Throughout the project, the development
team will produce documentation
suitable for an ISO 9001 audit.
The development team will produce the
software in accordance with CMM level
3.
All configuration information is read from
a central location.

Purchasers

Users A user can search for a job by title and
salary range.

25

Stories valued by developers
Should be rewritten to show the benefit

All connections to the
database are through a
connection pool.

Up to 50 users should
be able to use the
application with a five-
user database license.

All error handling and
logging is done through
a set of common
classes.

All errors are presented
to the user and logged
in a consistent manner.

Estimatable
Because stories are used in planning
A story may not be estimatable if:

Developers lack
domain knowledge

New users are given a diabetic
screening.

Developers lack
technical knowledge

A user can select to see all text
on the site in a larger font.

A user can find a job.The story is too big

26

Small
Large stories (epics) are

hard to estimate
hard to plan

They don’t fit well into single iterations

Compound story
An epic that comprises multiple shorter stories

Complex story
A story that is inherently large and cannot easily
be disaggregated into constituent stories

Compound stories

A user can post her
resume.

A resume includes separate
sections for education, prior jobs,
salary history, publications, etc.
Users can mark resumes as
inactive
Users can have multiple resumes
Users can edit resumes
Users can delete resumes

Often hide a great number of assumptions

27

Splitting a compound story
Split along operational

boundaries (CRUD)

A user can create resumes, which include
education, prior jobs, salary history, publications,
presentations, community service, and an
objective.
A user can edit a resume.
A user can delete a resume.
A user can have multiple resumes.
A user can activate and inactivate resumes.

Splitting a compound story, cont.

A user can add and edit educational information on
a resume.
A user can add and edit prior jobs on a resume.
A user can add and edit salary history on a
resume.
A user can delete a resume.
A user can have multiple resumes.
A user can activate and inactivate resumes.

Split along data boundaries

28

Testable
Tests demonstrate that a story meets the
customer’s expectations
Strive for 90+% automation

A user must find
the software easy
to use.

A novice user is able
to complete
common workflows
without training.

A user must never
have to wait long for
a screen to appear.

New screens appear
within 2 seconds in
95% of all cases.

Today’s agenda
What are user stories?

Why user stories?
User role modeling
Trawling for stories
INVEST in good stories
Guidelines for writing good stories
Why plans go wrong
Estimating
Planning
Why agile planning works

29

Additional guidelines for good stories

Keep the UI out as
long as possible
Some things aren’t
stories
Include user roles in
the stories
Write for one user
Write in active voice

Start with goals
Slice the cake
Write closed stories
Put constraints on
cards
Size the story to the
horizon

Don’t forget the
purpose

Start with goals
For each role, ask

What are this user’s goals in using the system?

Job Seeker

Search for jobs

Get automatic
updates on
relevant jobs

Make her resume
available

Easily apply for
jobs

A Job Seeker
can…

30

Slice the cake
Our first inclination is often to write stories that are purely
from one layer
We’re better off taking a slice through the entire cake

Database

Middle Tier

User Interface

A Job Seeker can fill
out a resume form.

Information on a
resume form is written
to a database.

A Job Seeker can
post a resume.

An example
These stories do not “slice the cake”:

31

A better way

A Job Seeker can submit a
resume that includes only
basic information such as
name, address, and
education history.

A Job Seeker can submit a
resume that includes all
information an employer
may want to see.

A Job Seeker can
post a resume.

Why?
Exercising each layer reduces architectural risk
Easier to prioritize

Stories that don’t slice the cake tend not to
provide any business value

Application could be released early with only a
few slices done

32

Write closed stories
A closed story is one that finishes with the
achievement of a meaningful goal.

User feels she’s accomplished something.

A user can manage
the ads she’s

placed.

This story is never
done
It’s something the user
does on an ongoing
basis

Examples of closed stories

A user can manage
the ads she’s

placed.

A recruiter can review
resumes from applicants
to one of her ads.

A recruiter can change
the expiration date of an
ad.

A recruiter can delete an
application that is not a
good match for a job.

33

Put constraints on cards
Write constraints on cards, just like any other
stories
Annotate with “constraint.”
Put each into the earliest possible iteration
Have tests to verify the constraint is met

The system must support peak
usage of up to 50 concurrent
users.

Constraint

More example constraints
Do not make it hard to internationalize the
software if needed later.
The new system must use our existing order
database.
The software must run on all versions of
Windows.
The system will achieve uptime of 99.999%.
The software will be easy to use.

34

Size the story to the horizon
Focus attention where it’s needed most
If the story will be coded soon,

Write stories that can be estimated and used
in planning

If not,
Write an epic

Strive for a system where developers pull
stories through the system

Rather than where stories push developers to
go faster

Keep the UI out as long as possible
On a new project the UI doesn’t exist, so leave it
out of stories as long as possible
Including UI detail in a story constrains the
possible solutions
Eventually, you’ll have UI-specific stories:

“Add a page size button to the print dialog.”
“Take some fields on the search screen and hide
them behind a ‘more…’ button.”

35

Too much UI detail

Print dialog allows the user to edit the printer
list. The user can add or remove printers from
the printer list. The user can add printers
either by auto-search or manually specifying
the printer DNS name or IP address. An
advanced search option also allows the user to
restrict his search within specified IP
addresses and subnet range.

Some things aren’t stories
If you have a requirement that doesn’t fit as a
story, write something else

A use-case
User interface guidelines
A list of business rules
Interface with another system

Whatever you write, keep it lightweight

36

Include user roles in the stories
Sometimes all users want to act in a specific
story but often it’s a type of user
Help everyone by putting that user in mind when
looking at the story card:

A Job Seeker can post a resume.
A Recruiter can read submitted resumes.

A template I really like to start with:
“As a <role> I want to <story> so that <benefit>.”

Write for one user
Usually it doesn’t matter:

Recruiters can search for
good candidates.

But often enough it causes confusion:
Job Seekers can post
resumes.

Can one job
seeker post
multiple resumes?

37

Single-user stories remove ambiguity

Job Seekers can post
resumes.

A Job Seeker can post
resumes.

Written for one user, it’s clear that each user can
post multiple resumes

Most importantly…

Don’t forget the
purpose

The story text we write on cards is less
important than the conversations we
have.
“Stories represent requirements, they do
not document them.”†

†Rachel Davies, “The Power of
Stories,” XP 2001.

38

Today’s agenda
What are user stories?

Why user stories?
User role modeling
Trawling for stories
INVEST in good stories
Guidelines for writing good stories
Why plans go wrong
Estimating
Planning
Why agile planning works

Why plans go wrong

1. Tasks are assumed to be
independent

2. Lateness is passed down the
schedule; earliness is not

3. The Student Syndrome

39

1. Task independence
Sum of five dice
Central Limit Theorem

Sum of a number of
independent samples from
any distribution is
approximately normally
distributed

This means that
some are bigger
some are small
but overall things average out

Does CLT apply to software?

Highly correlated tasks

40

CLT and software
The tasks on a software Gantt chart are not independent

Many tasks involve similar work; if one estimate is wrong
the others tend to be wrong
There may be systematic error in the estimates

“Jay Days”
Software estimates tend not to be normally distributed

When asked for a point estimate programmers respond
with the mode

2. Lateness is passed along the schedule

Task 3 starts:
LATE if 1, 2 or 4 is late
EARLY only if 2 and 4 are early, and resource is
available

Task 1

Task 2

Task 3

Task 4

41

3. Student syndrome

Definition
Starting a task at the last
possible moment that does not
preclude an on-time completion

Example Starting a term paper the night
before it’s due

What happens with student syndrome
Estimate is based on this

But we behave like this

Task Local Safety

Local Safety Task

42

Today’s agenda
What are user stories?

Why user stories?
User role modeling
Trawling for stories
INVEST in good stories
Guidelines for writing good stories
Why plans go wrong
Estimating
Planning
Why agile planning works

Ideal time
An estimate of how long something would take if:

It’s the only thing you work on
You have everything you need at hand when you
start
There are no interruptions

43

Calendar time vs. ideal time

Calendar time Monday has 8 hours
Each week has 40 hours

Time on task
Monday has

3 hours of meetings
1 hour of email
4 hours of programming
(time-on-task)

Ideal time

“How long will this take?”

March 1

TODAY

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 April 1 2 3 4

March 04

“Two weeks.”
Two calendar weeks or two weeks worth of
time on task?

44

Factors affecting ideal time
Vacations
Sick time
All-company meetings
Department meetings
Demos

Personnel issues
Phone calls
Special projects
Training
Email

Reviews & walk-throughs
Interviewing candidates
Spikes
Leaves of absence
Sabbaticals

Ideal time vs. calendar time
It’s easier to estimate in ideal time
It’s too hard to estimate directly in calendar time

Need to consider all the factors that affect
calendar time at the same time you’re estimating

45

But, there’s a problem
Whose ideal time? Yours? Mine?

How do we add
Your Ideal Time

to
My Ideal Time?

Experienced Senior Programmer Days
How?

Define an archetypal programmer and estimate
how long it will take her
I like an “Experienced Senior Programmer”

But it can vary and depends on the team
Why?

Estimates can be more honest
If questioned, “Oh, it wouldn’t take me that long.”

Bias toward insufficient estimates goes away
Estimates can be added and compared

46

Disadvantages of ideal time
Can’t add your ideal time to my ideal time

Without estimating in something like “Experienced
Senior Programmer” days
But it can be hard to estimate someone else’s
ideal time

Need to re-estimate whenever we get better or
when we know something new about a task
Developers may make an implicit conversion

“Two ideal days is about a week. I think I could do
this in a week. I’ll say it’s two ideal days.”

Advantages of ideal time
Very tangible and understandable

Easy to get started with
Straightforward to convert from ideal time to
calendar time

47

Magnitude
The “bigness” of a task
Influenced by

Complexity
Our current knowledge
How much of it there is

Relative values are what is important:
“A login screen is a 2.”
“A search feature is an 8.”

“A login screen is small.”
“A search feature is large.”

What are the magnitudes of these?
Develop 100 screens,

each with 1-2 fields

Code 1 screen with 200
fields on it

Remove the recursion
from the ABC class and

make it thread safe

Write a “Hello, World”
servlet

48

Problems with magnitude
Values must be meaningful and distinguishable

How do you tell a “67” from a “68”?
Eventually you need to convert an estimate of magnitude
into an estimate of duration

“We’ll be done in 8 mediums, 3 smalls and 4 larges.”
“We’ll be done in 43 Gummi Bears.”

Developers may make an implicit conversion
“Most 3s take a day, this seems like a day; I’ll say it’s a 3.”

Can feel very uncomfortable at first
Very hard to estimate initial velocity

Advantages to magnitude
Some developers find it much easier to say “this is like
that”
The abstractness can help developers from feeling
coerced into giving an estimate that meets an expected
deadline

“My boss wants this in two weeks, I guess I’ll say ‘two
weeks.’”

Can be done very quickly, once it’s familiar
Less need to re-estimate than ideal time

Something that used to take 1 ideal day might now take ½
ideal day (as the team improves)
Something that is “big” is still big; even though the team
may be faster

49

Story points
A story point is either:

1 ideal day
1 unit of measure for magnitude

What I do
Start with ideal time

It gives a team a nice foundation for the initial
stories
Helps them get started
I define “1 Story Point = 1 Ideal Day”

Gradually convert team to thinking more about
magnitude

This story is like that story
Stop talking about how long it will take

50

Use the right units

Ideal time
Can you distinguish a 17-hour
task from an 18-hour task?
Can you distinguish a ½ day
from a 1 day task?

Magnitude
Can you distinguish a 17 from
an 18?
A ½ from a 1?

Use units that make sense, such as:
0, ½, 1, 2, 3, 5, 10, 20, 40
0, ½, 1, 2, 3, 5, 8, 13, 21, 34

State your assumptions

Single most-likely finish;
what many developers offer

But here’s 50/50

Conservative (90%)
is way out here

51

Give both 50% and 90% estimates
50% estimates

Remove all local safety: no “padding”
An estimate you should / will miss half the time

90% estimates
Not really a worst case

No lightning strikes or busses running over people
Keep in mind that you’ll even exceed this estimate
occasionally

Approaches to estimating
Gut feel
Analogy
Disaggregation
Wideband Delphi

52

Gut feel
Good as a reasonableness check

Analogy
Analogy

“This story is like that story, so its estimate is what
that story’s estimate was.”
Works especially well if baseline story has been
coded
Triangulate

Estimate by analogy to two different stories

53

Triangulation

Story 1

Story 3

Story 2

Story 4

Confirm estimates by comparing the story to multiple
other stories.
Group like-sized stories on table or whiteboard

Check a few stories in each direction

….….….….….….….

….….….….….….….

….….….….….….….

….….….….….….….

1

4

2

8

Are the 2s twice the
1s?

Are
the 8s
4x the

2s?

Are the 8s twice the
4s?

54

Disaggregation
Breaking a big story into littler stories or tasks
You know how long the smaller tasks take

So, disaggregating to something you know lets
you estimate something bigger you don’t know

Sometimes very useful
But disaggregating too far causes problems

Forgotten tasks
Summing lots of small errors can be big number

Wideband Delphi
An iterative approach to estimating
Steps
1. Identify small group of estimators and give them

stories to read before the meeting
2. Each estimator is given a deck of cards, each card

has a valid estimate written on it
3. A moderator reads a story and it’s discussed briefly
4. Each estimator selects a card that’s his 50% estimate
5. Cards are turned over so all can see them
6. Discuss differences (especially outliers)
7. Re-estimate until estimates converge
8. Use the highest value or repeat for a 90% estimate

55

Wideband Delphi—an example

44Sherri

42Ann

57Rafe

44Susan

Round 2Round 1Estimator

Today’s agenda
What are user stories?

Why user stories?
User role modeling
Trawling for stories
INVEST in good stories
Guidelines for writing good stories
Why plans go wrong
Estimating
Planning
Why agile planning works

56

What we’d like to do
Take a prioritized stack of user stories
Figure out how much we can do per iteration
And then know how many iterations it will take

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Different dimensions to prioritization

Technical
Risk that the story cannot be
completed as desired
Impact the story will have on
other stories if deferred

Customers /
Users

Desirability of the story to a
broad base of users
Desirability of the story to a small
number of important users
Cohesiveness of the story to
other stories.

57

Who wins
Customer wins—always
But need developer input in order to prioritize

The user can book a new
trip based on a previous
trip.

3—5 days

Developers are best at
identifying dependencies

between stories

Customer cannot prioritize
without knowing the cost of

the stories

Split stories with mixed priorities

Users can search for
magazine articles by author,
publication name, title, date,
or any combination of these.

Users can search for
magazine articles by author
and/or title.

Users can search for
magazine articles by
publication name, date or
any combination of these.

58

Risky stories vs. juicy stories
Agile is firmly in the camp of doing the “juicy bits”
first
But cannot totally ignore risk

If some stories are very risky, the developers
need to tell the customer

Infrastructural stories
Infrastructural stories are usually best assessed
by the risk of deferring them (but still doing them
later)

Be able to generate 50
stock chart images per
second.

Is this performance
achievable on targeted

hardware?

Can we still use Java or
should we do this natively?

What type of caching do
we need to achieve this?

59

How much can we do per iteration?
Velocity
Our best guess is that we can do next iteration
what we did last iteration

“Yesterday’s Weather” (Beck & Fowler)
But sometimes we don’t have a last iteration

Getting an initial velocity
Use historicals Great if you have them from a

similar project by the same team

Run an iteration
Great if you can do it
Not always viable, e.g.,

No team in place yet
Boss wants early estimate

Forecast
May not always be preferred
approach
But, you need it as a tool

60

Forecasting velocity from ideal time
Estimate each developer’s productivity relative to the
archetypal Experienced Senior Programmer used in the
estimates
Considerations

Programming skill
Domain knowledge
Availability to actual code
Vacation

Example: forecasting initial velocity

.4.3.2Clark

.7.7.6.5Vlade

1.01.0.9.8Chris

2.5

.2

.5

.5

Iteration 1

3.1

.3

.5

.6

Iteration 2

3.6

.4

.5

.7

Iteration 3

3.7Total

.4Randy

.5Ann

.7Susan

ThereafterDeveloper

This tells you how many ideal programmers you
have working per calendar day

61

Forecasting velocity from magnitude
Starting with the highest-priority story, select as
many stories as you think will fit in the first
iteration
Break each story into smaller tasks (< 1 calendar
day)
When the iteration feels full, stop and see how
many story points were brought in
That’s your guess at velocity

Release planning
We can’t add the 50% estimates together

That assumes everything goes smoothly
Overall schedule will be too short

50% 90% +

!=

50% 90% + 50% 90%

50% 50% 50%

62

Release planning
We can’t add the 90% estimates together

That assumes that everything goes wrong
Overall schedule will be too long

50% 90% +

!=

50% 90% + 50% 90%

50% 90% 50% 90% 50% 90%

The solution
We add the 50% estimates
And buffer the overall project, rather than the
tasks

50% 90% +

==

50% 90% + 50% 90%

50% 90%50% 50%

63

My trip to the airport

50% Estimate

Buffer to 90%

Time = 1:05

Time = 1:45

Total = 2:50 minutes

1 5

Find Keys

45 30

Drive to Airport

5 10

Park

7 30

Check in

7 30

Security

My trip with a project buffer

50% Estimate

Buffer

Time = 1:05

Time = 0:53

Total = 1:58

1

45

5

7

7

53

Was 2:50

64

A project buffer isn’t padding
Padding is extra time you don’t think you’ll need but
add to be safe
You will need the project buffer

Even with the project buffer you’re not guaranteed to
be done on time

I had a 3% chance of making it to my flight in 65
minutes

1:05 53

%125.3%50%50%50%50%50 =××××

Would you call something that increases your odds of
success from 3% “padding”?

How long should the buffer be?
Simple rule

Use 50% of the unbuffered (50%) schedule
More sophisticated, usually better

() () ()awawaw nn−−− +++
222

2211 L

w = worst case
a = average case

65

Sample buffer calculation

272817Total
165Story 6
985Story 5
431Story 4
011Story 3
453Story 2
952Story 1
(90%—50%)290%50%Story

222.5172717 =+=+=Schedule

Full example of planning a release

1089200117Total
0………

453Story 2

952Story 1

(90%—50%)290%50%Story

150331171089117 =+=+

.4.3.2Clark

.7.7.6.5Vlade

1.01.0.9.8Chris

2.5

.2

.5

.5

Iteration 1

3.1

.3

.5

.6

Iteration 2

3.6

.4

.5

.7

Iteration 3

3.7Total

.4Randy

.5Ann

.7Susan

ThereafterDeveloper

66

Example, continued

125373.710Iteration 4

162373.710Iteration 5

9

10

10

Duration
(Days)

3.6

3.1

2.5

Daily
Velocity

32

31

25

Story Points
in iteration

88Iteration 3

56Iteration 2

25Iteration 1

Cumulative
Story Points

Iteration

Accumulate 150 Story Points
sometime during Iteration 5

Velocity estimates from
previous slide

Company
holiday

Today’s agenda
What are user stories?

Why user stories?
User role modeling
Trawling for stories
INVEST in good stories
Guidelines for writing good stories
Why plans go wrong
Estimating
Planning
Why agile planning works

67

Why agile planning works
Why plans go wrong

1. Tasks are assumed to be
independent

2. Lateness is passed down the
schedule; earliness is not

3. The Student Syndrome

Why agile planning works

1. Tasks are assumed to
be independent

Stories (the main unit of
estimation) are largely
independent.

68

Why agile planning works

2. Lateness is passed
down the schedule;
earliness is not

No overall Gantt or PERT chart
Each day, each person picks what she’ll
do

Lateness doesn’t pass down an
agile plan
Earliness does pass down

Naturally, there are some dependencies
But these are limited with an agile
plan

Why agile planning works

No Gantt chart saying
what to do today and how
long to take
Increased visibility through
daily standup meetings
and pair programming

3. The Student
Syndrome

69

Additionally

Agile planning encourages
and enforces continuous re-
estimation and recalibration

For more on user stories

www.userstories.com
groups.yahoo.com/group/userstories

70

Where to go next?

www.mountaingoatsoftware.com/scrumScrum

www.agilealliance.comAgile in General

groups.yahoo.com/agileplanningAgile Planning

My contact information

mike@userstories.com
mike.cohn@computer.orgEmail

www.userstories.com Website

