
R. Scott Harris1 and Mike Cohn2

1Montana State University–Billings
2Mountain Goat Software

Incorporating Learning
and Expected Cost of Change

in Prioritizing Features
on Agile Projects

Copyright Mountain Goat Software, LLC

Business value

• Usual advice to product owners is to
prioritize based on “business value”

• But what is business value?

• Putting the competition out of business?

• Lowering delivery cost?

• Increasing short term revenue?

• Achieving cash-flow breakeven?

1

2

Tuesday, June 20, 2006

Copyright Mountain Goat Software, LLC

Telling a product owner to “prioritize on
business value” offers as much guidance

as the president of General Motors
ordering a lathe operator to “maximize

corporate profits.”

Copyright Mountain Goat Software, LLC

Traditional advice

• Saaty’s Analytic Hierarchy Process is often
considered “the most promising approach”

• Involves pairwise comparison of all features

• Perhaps feasible once at the start of a project

• Assumes perfect knowledge

• Agile projects incorporate and acknowledge
learning and feedback

• Not feasible every iteration on an agile project

3

4

Tuesday, June 20, 2006

Copyright Mountain Goat Software, LLC

1.Defer features with high expected
costs of change

2.Bring forward features that
generate useful knowledge

3. Incorporate new learning often, but
only to decide what to do next

Three guidelines

Copyright Mountain Goat Software, LLC

• Expected Cost of Change = ECC

Guideline 1
Defer features with high expected costs
of change

ECC = (probability of change) (cost of change)

• Overall expected cost can be lowered if features
that are likely or costly to change are deferred

• We’ll know more later so deferring these means we’re
more likely to get them right

5

6

Tuesday, June 20, 2006

Copyright Mountain Goat Software, LLC

Expected Cost of Change

Time

ECC
ECC0

ECC1

ECC2

Copyright Mountain Goat Software, LLC

An implication

• Because of this we want to:

• Prioritize activities that have the greatest impact
on lowering the ECC curve

• This leads to:

Guideline 2
Bring forward features that generate
useful knowledge

7

8

Tuesday, June 20, 2006

Copyright Mountain Goat Software, LLC

Useful knowledge

• Comes in a variety of forms

• About the desirability of a feature

• About the usability of a feature

• About the technical feasibility of a feature

• Useful knowledge is knowledge that will affect
prioritization of subsequent features

• Product owner asks herself, “If this feature had been
implemented already, would I do anything differently?”

Copyright Mountain Goat Software, LLC

Guideline 3
Incorporate new learning often, but only to
decide what to do next

• Learning is a continuous process

• Agile projects acknowledge that all learning cannot be
put upfront (as sequential projects try)

• So, decision-making about priorities is simplified

• “Now” vs. “Not Now”

• Those not done “Now” are reevaluated next iteration

• Supports agile preference for short iterations

9

10

Tuesday, June 20, 2006

Copyright Mountain Goat Software, LLC

Release plans still necessary

• Release plans are still useful and often
necessary

• Help establish a vision for where a project wants
to end up

• But should not detail iteration by iteration
sequencing details

Copyright Mountain Goat Software, LLC

Practical application

• Our advice to clients:

• Perform rough, initial prioritization based on the
“business value” of each feature

• Don’t bother prioritizing beyond the next 1-3
iterations

• Think of ECC and knowledge generated as sliders

• Move items forward or back in the prioritization

11

12

Tuesday, June 20, 2006

Copyright Mountain Goat Software, LLC

Example: architecture

• Consider a feature that:

• Has significant architectural
implications

• Does not have an exceptionally high
ECC

• Will generate significant new
knowledge

• Based on ECC, feature does not slide
backward

• Based on knowledge generated,
feature does slide forward

Copyright Mountain Goat Software, LLC

Some examples

• We’ve used this to support early selection of:

• A particular application server

• Features to test designs for a security framework

• Features that confirm main metaphors of the user
interface design

• We’ve used this to defer decisions with high
ECC that generate little new knowledge

• Choosing among three client technologies

13

14

Tuesday, June 20, 2006

Copyright Mountain Goat Software, LLC

Conclusions
• More useful than advice to prioritize on “business

value”

• Instructing product owners to

• consider relative changes in Expected Cost of Change (ECC)

• amount and significance of knowledge generated

leads to better decisions

• Guideline-based approach is easy

• Keeps focus on “what one thing should we do next” rather
than “what is full set of priorities”

• More iterative approach to prioritizing acknowledges
learning and fits with agile approach better

15

Tuesday, June 20, 2006

