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Business value

• Usual advice to product owners is to 
prioritize based on “business value”

• But what is business value?

• Putting the competition out of business?

• Lowering delivery cost?

• Increasing short term revenue?

• Achieving cash-flow breakeven?
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Telling a product owner to “prioritize on 
business value” offers as much guidance 

as the president of General Motors 
ordering a lathe operator to “maximize 

corporate profits.”
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Traditional advice

• Saaty’s Analytic Hierarchy Process is often 
considered “the most promising approach”

• Involves pairwise comparison of all features

• Perhaps feasible once at the start of a project

• Assumes perfect knowledge

• Agile projects incorporate and acknowledge 
learning and feedback

• Not feasible every iteration on an agile project
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1.Defer features with high expected 
costs of change

2.Bring forward features that 
generate useful knowledge

3. Incorporate new learning often, but 
only to decide what to do next

Three guidelines
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• Expected Cost of Change = ECC

Guideline 1
Defer features with high expected costs 
of change

ECC = (probability of change)  (cost of change)

• Overall expected cost can be lowered if features 
that are likely or costly to change are deferred

• We’ll know more later so deferring these means we’re 
more likely to get them right
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An implication

• Because of this we want to:

• Prioritize activities that have the greatest impact 
on lowering the ECC curve

• This leads to:

Guideline 2
Bring forward features that generate 
useful knowledge
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Useful knowledge

• Comes in a variety of forms

• About the desirability of a feature

• About the usability of a feature

• About the technical feasibility of a feature

• Useful knowledge is knowledge that will affect 
prioritization of subsequent features

• Product owner asks herself, “If this feature had been 
implemented already, would I do anything differently?”
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Guideline 3
Incorporate new learning often, but only to 
decide what to do next

• Learning is a continuous process

• Agile projects acknowledge that all learning cannot be 
put upfront (as sequential projects try)

• So, decision-making about priorities is simplified

• “Now” vs. “Not Now”

• Those not done “Now” are reevaluated next iteration

• Supports agile preference for short iterations
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Release plans still necessary

• Release plans are still useful and often 
necessary

• Help establish a vision for where a project wants 
to end up

• But should not detail iteration by iteration 
sequencing details
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Practical application

• Our advice to clients:

• Perform rough, initial prioritization based on the 
“business value” of each feature

• Don’t bother prioritizing beyond the next 1-3 
iterations

• Think of ECC and knowledge generated as sliders

• Move items forward or back in the prioritization
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Example: architecture

• Consider a feature that:

• Has significant architectural 
implications

• Does not have an exceptionally high 
ECC

• Will generate significant new 
knowledge

• Based on ECC, feature does not slide 
backward

• Based on knowledge generated, 
feature does slide forward
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Some examples

• We’ve used this to support early selection of:

• A particular application server

• Features to test designs for a security framework

• Features that confirm main metaphors of the user 
interface design 

• We’ve used this to defer decisions with high 
ECC that generate little new knowledge

• Choosing among three client technologies
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Conclusions
• More useful than advice to prioritize on “business 

value”

• Instructing product owners to

• consider relative changes in Expected Cost of Change (ECC)

• amount and significance of knowledge generated

leads to better decisions

• Guideline-based approach is easy

• Keeps focus on “what one thing should we do next” rather 
than “what is full set of priorities”

• More iterative approach to prioritizing acknowledges 
learning and fits with agile approach better
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