
1

Selecting an Agile Process:
Comparing the Leading Alternatives

Presented at SQuAD
October 15, 2002

By Mike Cohn

All slides copyright 2002, Mountain Goat Software

Presenter background

Spent much of the last 15 years consulting and
running contract development projects:

Viacom, Procter & Gamble, NBC, United Nations,
Citibank, other smaller companies

Have periodically taken full-time positions:
Genomica, McKesson, Arthur Andersen

Diverse background across:
Internal software vs. Shrinkwrap products
Web vs. Client-server
Java vs. Microsoft languages

Master’s degrees in CS and Economics

2

All slides copyright 2002, Mountain Goat Software

Background, cont.
Been managing projects since 1987 but remain a
programmer at heart
Author or lead author of three books on Java and one
on C++ database programming, articles in STQE and
CUJ.

All slides copyright 2002, Mountain Goat Software

Today’s agenda

What is agility?
Leading agile processes

FDD
Scrum
Extreme Programming

XBreed
Crystal
DSDM

Final comparisons

3

All slides copyright 2002, Mountain Goat Software

A Defined Process

A
Defined
Process

Every task must be completely
understood.
When given a well-defined set of inputs,
the same outputs are generated every
time.

W
ha

t i
s

ag
ilit

y?

All slides copyright 2002, Mountain Goat Software

Software development:
A defined process?

Is every task completely understood?
Are we even getting closer?

Given the exact same inputs (including
people)

Will we get the same results every time?
Can we even have the exact same inputs?

W
ha

t i
s

ag
ilit

y?

4

All slides copyright 2002, Mountain Goat Software

Project Noise Level

Simple

Complicated

Anarchy

Complex

Close to
Certainty

Far from
Certainty

Technology

Close to
Agreement

Far from
Agreement

R
eq

ui
re

m
en

ts

W
ha

t i
s

ag
ilit

y?

Source: Strategic Management and
Organizational Dynamics by Ralph Stacey
in Agile Software Development with Scrum
by Ken Schwaber and Mike Beedle.

All slides copyright 2002, Mountain Goat Software

Empirical model of process control

Useful when
Process cannot be sufficiently described to
ensure repeatability
There is so much complexity or noise that the
process leads to different outcomes

Expects the unexpected
Exercises control through frequent inspection
and adaptation

W
ha

t i
s

ag
ilit

y?

5

All slides copyright 2002, Mountain Goat Software

Empirical model

Process

Outputs
• Incremental

product
changes

Controls

Inputs
• Requirements
• Technology
• Team

W
ha

t i
s

ag
ilit

y?

Adapted from Agile Software Development
with Scrum by Ken Schwaber and Mike
Beedle.

All slides copyright 2002, Mountain Goat Software

Defined vs. Empirical

“It is typical to adopt the defined (theoretical)
modeling approach when the underlying
mechanisms by which a process operates are
reasonably well understood. When the process
is too complicated for the defined approach, the
empirical approach is the appropriate choice.”

Process Dynamics, Modeling, and Control,
Ogunnaike and Ray, Oxford University Press,
1992

W
ha

t i
s

ag
ilit

y?

6

All slides copyright 2002, Mountain Goat Software

The Agile Manifesto

We have come to value
Individuals and interactions over processes
and tools
Working software over comprehensive
documentation
Customer collaboration over contract
negotiation
Responding to change over following a plan

W
ha

t i
s

ag
ilit

y?

All slides copyright 2002, Mountain Goat Software

Individuals and interactions

Individuals and Interactions
over

Process and Tools

Scalable Continuous process
refinement

Adaptive,
empowered, self-
organizing teams

Absence of phases Use of minimal
planning

W
ha

t i
s

ag
ilit

y?

Adapted from: “Will the Real Agile
Processes Please Stand Up”, Ken
Schwaber, Cutter Consortium E-Project
Management Advisory Service, v. 2, no. 8.

7

All slides copyright 2002, Mountain Goat Software

Working software

Working Software
Over

Comprehensive Documentation

Iterative and
incremental

Working software is
primary measure of

progress
Artifacts minimized

W
ha

t i
s

ag
ilit

y?

All slides copyright 2002, Mountain Goat Software

Customer collaboration

Customer Collaboration
Over

Contract Negotiation

Customer
involvement
throughout

Adaptive, empirical
customer

relationship

W
ha

t i
s

ag
ilit

y?

8

All slides copyright 2002, Mountain Goat Software

Responding to Change

Responding to Change
Over

Following a Plan

Emergent
requirements

Frequent
inspections

W
ha

t i
s

ag
ilit

y?

All slides copyright 2002, Mountain Goat Software

Feature-Driven Development

Originates in Java
Modeling in Color with
UML by Coad, Lefebvre
and De Luca in 1999
Peter Coad

Founder of Togethersoft
Well-known OO
methodologist
UML modeler

Palmer and Felsing book
in 2002

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

9

All slides copyright 2002, Mountain Goat Software

Features

Serve as primary unit of work
Similar to XP Stories or Scrum backlog items
Small enough to do in two weeks

Feature Set
Collection of features
Assigned to a Chief Programmer and her team

Major Feature Set
A domain area, one or more Feature Sets

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

All slides copyright 2002, Mountain Goat Software

Example features

Estimate the closing
price of a stock.

Change the password
for a user.

Calculate the total
cost of an order.

Retrieve the room
number of a guest.

Format
<action> the <result> <by|for|of|to> a(n) <object>

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

A short description of an action of value to
users of the system:

10

All slides copyright 2002, Mountain Goat Software

Visible
Progress

Eight “Best Practices”

Need all 8 to be FDD

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

Feature
Teams

Domain
Object

Modeling
Developing

By
Feature

Inspections

Individual
Class

Ownership

Regular
Builds

Configuration
Management

All slides copyright 2002, Mountain Goat Software

Five processes

Develop
An

Overall
Model

Build a
Features

List

Plan
by

Feature

Design
by

Feature

Build
by

Feature

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

11

All slides copyright 2002, Mountain Goat Software

Process characteristics

Develop
An

Overall
Model

Build a
Features

List

Plan
by

Feature

Design
by

Feature

Build
by

Feature

First three processes are done sequentially
Remaining two phases are iterative
Focus is on modeling (UML)
Multiple small teams spin off and work on
“feature sets”

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

All slides copyright 2002, Mountain Goat Software

Entry Criteria Chief Architect, Chief Programmers and
Domain Experts selected

Form the modeling team
Conduct a domain walkthrough
Study documents (optional)
Develop small group models
Develop a team model
Refine the overall object model
Write model notes

TasksFe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

Verification Domain experts provide ongoing
evaluation throughout process.

The Chief Architect is satisfied with the
object model.Exit Criteria

Develop
An

Overall
Model

Build a
Features

List

Plan
by

Feature

Design
by

Feature

Build
by

Feature

12

All slides copyright 2002, Mountain Goat Software

Entry Criteria An overall model has been developed.

Form the Features List Team
Build the Features ListTasks

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

Verification
Self-assessment by modelers on the
features list team.
External verification by Domain Experts
as necessary.

Project Manager and Development
Manager are satisfied with Features
List.

Exit Criteria

Develop
An

Overall
Model

Build a
Features

List

Plan
by

Feature

Design
by

Feature

Build
by

Feature

All slides copyright 2002, Mountain Goat Software

Sample Features List

Making a reservation
Reserve a room for a guest
Look up a rate for a guest
…

Reporting
Calculate RevPAR for a hotel
Calculate RevPAR for a Competitive Set
…

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

13

All slides copyright 2002, Mountain Goat Software

Entry Criteria The Features List has been created.

Form the Planning Team
Determine the development sequence
Assign Feature Sets to Chief
Programmers
Assign Classes to Developers

Tasks

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

Verification
Self-assessment by Project Manager,
Development Manager, and Chief
Programmers.

Project Manager and Development
Manager are satisfied with the
Development Plan.

Exit Criteria

Develop
An

Overall
Model

Build a
Features

List

Plan
by

Feature

Design
by

Feature

Build
by

Feature

All slides copyright 2002, Mountain Goat Software

Sample Development Plan

……………

Aug
2002

AndrewView Internet rates for a hotelRatesReporting

……………

Sept
2002

JamesView future reservations for a
competitive set

Future
Reservations

Reporting

Sept
2002

TodView future reservations for a
hotel

Future
Reservations

Reporting

Sept
2002

ChrisUpdate a reservation for a guestReservationsInterfacing

Aug
2002

ChrisCancel a reservation for a guestReservationsInterfacing

Aug
2002

ChrisMake a reservation for a guestReservationsInterfacing

DateChief
Programmer

FeatureFeature SetMajor
Feature Set

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

14

All slides copyright 2002, Mountain Goat Software

Entry Criteria The Development Plan has been
completed.

Form a Feature Team
Conduct a domain walkthrough
(optional)
Study the referenced documents
(optional)
Develop the sequence diagrams
Refine the object model
Write class and method prologue
Design inspection

Tasks

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

Verification The design inspection.

A successful design inspection.Exit Criteria

Develop
An

Overall
Model

Build a
Features

List

Plan
by

Feature

Design
by

Feature

Build
by

Feature

All slides copyright 2002, Mountain Goat Software

Entry Criteria
The Design by Feature process has
been completed for the selected
features.

Implement classes and methods.
Conduct a code inspection.
Unit test.
Promote to the build.

TasksFe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

Verification A successful code inspection and
passing the unit tests.

Completion of at least one feature that
is of value to (visible to) the client.Exit Criteria

Develop
An

Overall
Model

Build a
Features

List

Plan
by

Feature

Design
by

Feature

Build
by

Feature

15

All slides copyright 2002, Mountain Goat Software

Six Key Roles

Project Manager
Chief Architect
Development Manager
Chief Programmer
Class Owner
Domain Expert

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

All slides copyright 2002, Mountain Goat Software

Key roles

Project Manager

Administrative lead
Reports progress
Manages budgets
Create and maintain a productive
environment
Shields team from distractions
Ultimate decision-maker on scope,
schedule and resources

Responsible for overall system design
Runs collaborative sessions with other
designers
Highly technical but also a facilitator
May be split into Domain Architect and
Technical Architect roles

Chief Architect

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

16

All slides copyright 2002, Mountain Goat Software

Key roles, continued

Development
Manager

Leads day-to-day development
activities
Requires good technical skills
Solves problems among Chief
Programmers
Responsible for developer resource
conflicts
May be combined with Project
Manager or Chief Architect

Experienced developer
Participate in A&D activities
Lead teams of 3-6 developers

Chief Programmer

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

All slides copyright 2002, Mountain Goat Software

Key roles, continued

Class Owner
A developer on a team working under
a Chief Programmer
Design, code, test and document
classes

Users or analysts with domain
knowledge
Go-to resources for developers

Domain Expert

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

17

All slides copyright 2002, Mountain Goat Software

Supporting roles

Domain Manager
Release Manager
Language Guru
Build Engineer
Toolsmith
System Administrator

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

All slides copyright 2002, Mountain Goat Software

Supporting roles

Domain Manager Leads the Domain Experts (large
projects)

Tracks items released into new builds
An assistant to the Project ManagerRelease ManagerFe

at
ur

e-
D

riv
en

 D
ev

el
op

m
en

t

Language Guru

Knows all aspects of the programming
language
Responsible for ensuring correct use of
the language
May be a consultant, if needed at all

18

All slides copyright 2002, Mountain Goat Software

Supporting roles

Build Engineer Maintains version control system and
build processes

Creates tools needed by other
individuals
May be a centralized IT team

ToolsmithFe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

System
Administrator

Keeps network and servers running
Supports specialized development
tools and equipment
Typically involved in system
deployment

All slides copyright 2002, Mountain Goat Software

Additional roles

Testers
Deployers
Technical Writers

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

19

All slides copyright 2002, Mountain Goat Software

Additional roles

Testers
Independently verify system meets
requirements
May be part of the project or a separate
group

Plan and carry out physical deployment
of new system
Convert data from old system
May be part of project or separate

Deployers

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

Technical Writers Write online and printed documentation
May be part of project or separate

All slides copyright 2002, Mountain Goat Software

Tracking progress

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

65%

Aug 2002

Reservations
(3)

65%

Tod

Work in Progress

Name of Chief Programmer

Completed

Attention

Not Yet Started

Name of Feature Set

Number of Features in Set

Percentage Complete

Target Completion Month

20

All slides copyright 2002, Mountain Goat Software

So where’s the testing?
Testing is conspicuous by its absence
Why?

FDD authors thought most organizations already
have good test practices

Do they?
Are they complementary to FDD?

Wanted to address “core development processes”
Isn’t testing “core”?

Why else?
Testing doesn’t sell UML tools

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

All slides copyright 2002, Mountain Goat Software

Unit testing

The “Build by Feature” process does require
unit testing
Approach is left up to the Chief Programmers

Can be very different on projects with multiple
Chief Programmers

FDD requires “regular” builds
Not necessarily continuous builds

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

21

All slides copyright 2002, Mountain Goat Software

Design inspections

Held during “Design by Feature” process for
each feature set
Full team (of one Chief Programmer)
participates
Other Chief Programmers may be invited

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

All slides copyright 2002, Mountain Goat Software

Code inspections

Not necessarily Fagan Inspections
Approach is up to each Chief Programmer

So multiple approaches may be used on the
same project

While FDD says code inspections are
required, they say it’s not necessary for all
code
Done after unit testing is complete

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

22

All slides copyright 2002, Mountain Goat Software

Integration testing

Testing by Feature
Chief Programmer is responsible for end-to-
end testing of his feature

Leads to problems (“Do I test this or do you?”)
on teams with multiple Chief Programmers

Assign a Tester to work with the Feature
Team

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

All slides copyright 2002, Mountain Goat Software

Traceability and ownership

Traceability
Test cases come from Features List

Testers own complete Feature Sets, not just
individual Features

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

23

All slides copyright 2002, Mountain Goat Software

How agile is FDD?

SomewhatArtifacts are minimized
NoWorking software is primary measure of progress
MostlyIterative and incremental

Working Software
Not emphasizedContinuous process refinement
YesScalable
NoUse of minimal planning
NoAbsence of phases
Not reallyAdaptive, empowered, self-organizing teams

Individuals and Interactions

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

All slides copyright 2002, Mountain Goat Software

How agile is FDD?

YesFrequent inspection
NoEmergent requirements

Responding to Change
YesAdaptive, empirical customer relationship

Yes, but not
emphasized

Customer involvement throughout
Customer Collaboration

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t

24

All slides copyright 2002, Mountain Goat Software

Scrum
“The New New Product Development Game”
in Harvard Business Review, 1986.

“The… ‘relay race’ approach to product
development…may conflict with the goals of
maximum speed and flexibility. Instead a
holistic or ‘rugby’ approach—where a team tries
to go the distance as a unit, passing the ball
back and forth—may better serve today’s
competitive requirements.”

Wicked Problems, Righteous Solutions by
DeGrace and Stahl, 1990.

This is where Scrum was first mentioned in a
software context.

S
cr

um

All slides copyright 2002, Mountain Goat Software

Scrum origins
Jeff Sutherland

Initial Scrums at Easel Corp in 1993
IDX and nearly 600 people doing
Scrum
Not just for trivial projects

FDA-approved, life-critical
software for x-rays and MRIs

Ken Schwaber
ADM
Initial definitions of Scrum at
OOPSLA 96 with Sutherland

Mike Beedle
Scrum patterns in PLOPD4

S
cr

um

25

All slides copyright 2002, Mountain Goat Software

Characteristics

Self-organizing teams
Product progresses in a series of month-long
“sprints”
Requirements are captured as items in a list
of “product backlog”
No specific engineering practices prescribed
Uses generative rules to create an agile
environment for delivering projects

S
cr

um

All slides copyright 2002, Mountain Goat Software

Overview

30 days

24 hours

Product Backlog
As prioritized by Product Owner

Sprint Backlog

Backlog tasks
expanded
by team

Demonstrable
new functionality

Daily Scrum
Meeting

Source: Adapted from Agile Software
Development with Scrum by Ken
Schwaber and Mike Beedle.

26

All slides copyright 2002, Mountain Goat Software

The Scrum Master
S

cr
um

Represents management to
the project
Typically filled by a Project
Manager or Team Leader
Responsible for enacting
Scrum values and practices
Main job is to remove
impediments

All slides copyright 2002, Mountain Goat Software

The Scrum Team

Typically 5-10 people
Cross-functional

QA, Programmers, UI Designers, etc.
Members should be full-time

May be exceptions (e.g., System Admin, etc.)
Teams are self-organizing

What to do if a team self-organizes someone
off the team??
No titles

Membership can change only between sprints

S
cr

um

27

All slides copyright 2002, Mountain Goat Software

Sprints

Scrum projects make progress in a series of
“sprints”

Analogous to XP iterations
Target duration is one month

+/- a week or two
Product is designed, coded, and tested
during the sprint

S
cr

um

All slides copyright 2002, Mountain Goat Software

Sequential vs. Overlapping
Development

Source: “The New New Product
Development Game”, Hirotaka Takeuchi
and Ikujiro Nonaka, Harvard Business
Review, January 1986.

S
cr

um

28

All slides copyright 2002, Mountain Goat Software

No changes during the sprint

SprintInputs Tested Code

Change

S
cr

um

Plan sprint durations around how long you
can commit to keeping change out of the
sprint

All slides copyright 2002, Mountain Goat Software

Product Backlog

A list of all desired work on the project
Usually a combination of

story-based work (“let user search and replace”)
task-based work (“improve exception handling”)

List is prioritized by the Product Owner
Typically a Product Manager, Marketing,
Internal Customer, etc.

S
cr

um

29

All slides copyright 2002, Mountain Goat Software

Sample Product Backlog
S

cr
um

All slides copyright 2002, Mountain Goat Software

Sprint Planning Meeting

S
cr

um

Sprint Planning

Meeting

Product Backlog

Team Capabilities

Business Conditions

Technology

Current Product

Sprint Backlog

Prod
uc

t O
wne

r
Scru

m Te
am

Man
ag

em
en

t

Cus
tom

ers

Sprint Goal

30

All slides copyright 2002, Mountain Goat Software

The Sprint Goal

Database Application

“Make the application
run on SQL Server in
addition to Oracle.”

Life Sciences

“Support features
necessary for

population genetics
studies.”

Financial Services

“Support more
technical indicators
than company ABC

with real-time,
streaming data.”

A short “theme” for the sprint:

S
cr

um

All slides copyright 2002, Mountain Goat Software

From Sprint Goal to Sprint Backlog

Scrum team takes the Sprint Goal and
decides what tasks are necessary
Team self-organizes around how they’ll meet
the Sprint Goal

Manager doesn’t assign tasks to individuals
Managers don’t make decisions for the team
Sprint Backlog is created

S
cr

um

31

All slides copyright 2002, Mountain Goat Software

Sample Sprint Backlog
S

cr
um

All slides copyright 2002, Mountain Goat Software

Sprint Backlog during the Sprint

Changes
Team adds new tasks whenever they need to
in order to meet the Sprint Goal
Team can remove unnecessary tasks
But: Sprint Backlog can only be updated by
the team

Estimates are updated whenever there’s new
information

S
cr

um

32

All slides copyright 2002, Mountain Goat Software

Sprint Burndown Chart

Progress

752 762
664 619

304 264
180

104
200

100
200
300
400
500
600
700
800
900

5/3/2002

5/5/2002

5/7/2002

5/9/2002

5/11/2
002

5/13/2
002

5/15/2
002

5/17/2
002

5/19/2
002

5/21/2
002

5/23/2
002

5/25/2
002

5/27/2
002

5/29/2
002

5/31/2
002

Date

R
em

ai
ni

ng
 E

ffo
rt

 in
 H

ou
rs

S
cr

um

All slides copyright 2002, Mountain Goat Software

Parameters
Daily
15-minutes
Stand-up
Not for problem solving

Three questions:
1. What did you do yesterday
2. What will you do today?
3. What obstacles are in your way?
Chickens and pigs are invited

Help avoid other unnecessary meetings
Only pigs can talk

Daily Scrum meetings

S
cr

um

33

All slides copyright 2002, Mountain Goat Software

Questions about Scrum meetings?

Why daily?
“How does a project get to be a year late?”

“One day at a time.”
Fred Brooks, The Mythical Man-Month.

Can Scrum meetings be replaced by emailed
status reports?

No
Entire team sees the whole picture every day
Create peer pressure to do what you say you’ll do

S
cr

um

All slides copyright 2002, Mountain Goat Software

Constraints

A complete list of constraints put on the team
during a Sprint:

<end of list>

S
cr

um

34

All slides copyright 2002, Mountain Goat Software

Sprint Review Meeting
Team presents what it
accomplished during the sprint
Typically takes the form of a demo
of new features or underlying
architecture
Informal

2-hour prep time rule
Participants

Customers
Management
Product Owner
Other engineers

S
cr

um

All slides copyright 2002, Mountain Goat Software

Testing & Scrum

Scrum doesn’t specify any specific
engineering practices
However, each sprint is required to produce
ready-to-use code

Heavy in-sprint testing is usually applied
Some teams have dedicated testers

Others have programmers test everything
Other engineering practices are up to you

Automation, code inspection, pair
programming, static analysis tools, etc.

S
cr

um

35

All slides copyright 2002, Mountain Goat Software

Stabilization Sprints

Team focuses entirely on defects
Prepares a product for release
Useful during

active beta periods
when transitioning a team to Scrum
if quality isn’t quite where it should be on an initial release

Not a part of standard Scrum, just something I’ve found useful

Sprint 1 Sprint 2 Sprint 3 Sprint 4

Sprint 1 Sprint 2 Sprint 3 Stabilization
Sprint

S
cr

um

All slides copyright 2002, Mountain Goat Software

Scalability of Scrum

Typical Scrum team is 5-10 people
Sutherland used Scrum in groups of 600+
I’ve used in groups 100+

S
cr

um

36

All slides copyright 2002, Mountain Goat Software

Scrum of Scrums / Meta-Scrum
S

cr
um

All slides copyright 2002, Mountain Goat Software

How agile is Scrum?

YesArtifacts are minimized
YesWorking software is primary measure of progress
YesIterative and incremental

Working Software
YesContinuous process refinement
YesScalable
YesUse of minimal planning
YesAbsence of phases
YesAdaptive, empowered, self-organizing teams

Individuals and Interactions

S
cr

um

37

All slides copyright 2002, Mountain Goat Software

How agile is Scrum?

YesFrequent inspection
YesEmergent requirements

Responding to Change
YesAdaptive, empirical customer relationship
YesCustomer involvement throughout

Customer Collaboration

S
cr

um

All slides copyright 2002, Mountain Goat Software

Extreme Programming (XP)

The Three Extremos
Kent Beck
Ward Cunningham
Ron Jeffries

C3 ProjectE
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

38

All slides copyright 2002, Mountain Goat Software

Characteristics

“Turning all the dials up to 10”
1-3 week iterations
Stories
On-site customer
Heavy, heavy emphasis on unit testing
Do the simplest thing possible
You Aren’t Gonna Need It (YAGNI)

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

All slides copyright 2002, Mountain Goat Software

Core values
Many problems can be traced back to
communicationsCommunication

What is the simplest [design/code/test/etc.]
that will work in this situation?
Focus on known needs of today instead of
planning for hypothetical future needs

Simplicity

Feedback from the system through tests
and continuously integrated code
Customers get feedback through frequent
iterations

Feedback

Courage to openly say what you believe
Courage to pursue design and code
changes

Courage

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

39

All slides copyright 2002, Mountain Goat Software

12 13 Practices

Whole Team (On-site
customer)
Small releases
The Planning Game
Simple design
Pair programming
Test Driven
Development
Customer Tests

Refactoring (Design
Improvement)
Collective code
ownership
Coding standard
Continuous integration
Metaphor
Sustainable Pace

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

All slides copyright 2002, Mountain Goat Software

Practice 1

Whole Team / On-site customer
Everyone sits together in one room
A real customer sits with the development
team

May be a customer proxy when a real
customer isn’t available (e.g., ISV)

If the business can’t spare a customer, is the
project worth doing?
The customer

Writes stories
Writes acceptance tests

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

40

All slides copyright 2002, Mountain Goat Software

Stories

Method for expressing
functionality in XP

Analogous to use
cases or requirements

Also used for tracking
progress

Track preferences
Keep track of the types of
hotel (e.g., Marriott, 4-star,
etc.) that a customer stays
at.

View an existing reservation

Present the customer with a
list of reservations he’s
made.

Sort hotels

Allow the customer to sort
hotels by various attributes
(e.g., class, price, name).

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

All slides copyright 2002, Mountain Goat Software

Practice 2

Small releases
Plan only as far in advance as
you can see
Adjust the plan as necessary
Each release is as small as
possible to actually deliver
something of value

Typically 1-3 weeks
Do not need to deploy

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

41

All slides copyright 2002, Mountain Goat Software

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

Technical People

Business People

Practice 3

The Planning Game

The Planning Game

Sco
pe

Prio
rity

Rele
as

e d
ate

s

Rele
as

e c
om

po
sit

ion

Esti
mate

s
Con

se
qu

en
ce

s

Deta
ile

d s
ch

ed
uli

ng

Proc
es

s

Iteration 1 Iteration 2 Iteration 3

All slides copyright 2002, Mountain Goat Software

The Cost of Change

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

“The error [is] typically 100 times more
expensive to correct in the maintenance
phase than in the requirements phase.”

Software Engineering Economics, Barry Boehm, 1981, p. 40.

42

All slides copyright 2002, Mountain Goat Software

The Cost of Change

Project Duration

C
os

t o
f C

ha
ng

e

XP

Traditional
Process

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

All slides copyright 2002, Mountain Goat Software

Practice 4

Simple design
Design only for today
If the future is uncertain, don’t code for it
today
Do not add infrastructure in this iteration for
stories coming in future iterations

Upcoming stories could be cancelled or
lowered in priority

YAGNI
Do the simplest thing that can possibly work

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

43

All slides copyright 2002, Mountain Goat Software

Practice 5

Pair programming
Two programmers at one computer

The driver
has the keyboard
focuses on the tactical aspects of writing the code

Partner
Watches the forest, not the trees
Thinks about missing tests, integration issues, etc.

Keep each other “honest”
A lot of XP requires great discipline

Programming is far more than typing
Pairs constantly shift

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

All slides copyright 2002, Mountain Goat Software

Practice 6

Test-Driven Development (TDD)
Write the unit tests first, then write the code
“Any program feature without an automated
test simply doesn’t exist.”

—Kent BeckE
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

44

All slides copyright 2002, Mountain Goat Software

JUnit

A framework for automated unit testing
Programmers write tests in their Java code

JUnit executes TestCases and TestSuites
Provides instant feedback on whether the
code works

If each programmer writes JUnit TestCases…
Details are at: www.junit.org
Other xUnit test frameworks exist (VB, http,
etc.)

All slides copyright 2002, Mountain Goat Software

JUnit

45

All slides copyright 2002, Mountain Goat Software

Practice 7

Customer tests
While programmers are programming:

Customer writes an acceptance test for each
story

Ideally, a tester is available to automate the
test

View an existing reservation

Present the customer with a
list of reservations he’s
made.

1) Test with a customer
with one reservation in
the past and two in the
future.

2) Test with a customer
with no reservations.

Front Back

All slides copyright 2002, Mountain Goat Software

Practice 8

Refactoring (Design Improvement)
Refactoring

Simplifying or improving the code
without changing its behavior

Automated unit tests ensure nothing
breaks

Allows programmers to refactor with
confidence

“Always leave the code cleaner than
you found it.”

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

46

All slides copyright 2002, Mountain Goat Software

Practices 9-11

Collective code ownership
Anyone can change any code

In fact, you’re required to if you see a better way

Coding standards
Necessary to support collective ownership and
refactoring

Continuous integration
Integration builds happen at least daily
Ideally (and usually) continuously

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

All slides copyright 2002, Mountain Goat Software

Practices 12 and 13

Metaphor
Establish a metaphor for the system

Helps establish a common lexicon and vision
Replaces “architecture” descriptions

Sustainable Pace
Teams work at a pace they can sustain over
the long haul
Work overtime only when needed and
effective

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

47

All slides copyright 2002, Mountain Goat Software

Practices support each other

XP works only because the strengths of one
practice shore up the weaknesses of another
Example:

Refactoring would be too risky if not for:
Collective code ownership
Coding standards
Pair programming
Simple design
Automated unit tests
Continuous integration
40-hour weeks

All slides copyright 2002, Mountain Goat Software

How agile is XP?

YesArtifacts are minimized
YesWorking software is primary measure of progress
YesIterative and incremental

Working Software
SomewhatContinuous process refinement
YesScalable
YesUse of minimal planning
YesAbsence of phases
YesAdaptive, empowered, self-organizing teams

Individuals and Interactions

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

48

All slides copyright 2002, Mountain Goat Software

How agile is XP?

YesFrequent inspection
YesEmergent requirements

Responding to Change
YesAdaptive, empirical customer relationship
YesCustomer involvement throughout

Customer Collaboration

E
xt

re
m

e
Pr

og
ra

m
m

in
g

(X
P

)

All slides copyright 2002, Mountain Goat Software

XBreed

Mike Beedle’s combination of Scrum, XP and
Patterns

Scrum

Patterns

XP

X
B

re
ed

49

All slides copyright 2002, Mountain Goat Software

XBreed practices

Scrum of Scrums for
team leaders

Planning Game
replaced by Scrum

Some YAGNI but not
as much as pure XP

Generally use CRC
cards for stories but
also use cases for
complex stories

X
B

re
ed

All slides copyright 2002, Mountain Goat Software

XBreed practices

Architect role is
defined

Strong emphasis on
patterns

Weekly technology
workshops

A Shared Services
team once a second
application is started

X
B

re
ed

50

All slides copyright 2002, Mountain Goat Software

Crystal

Alistair Cockburn
Project anthropologist
Interviews project teams
around the world

“Software development is
a cooperative game of
invention and
communication.”

—Alistair Cockburn

C
ry

st
al

All slides copyright 2002, Mountain Goat Software

Two values

People- and communication-centric
Tools, artifacts, and processes exist only to
support the people on the project

Highly tolerant
High or low ceremony
High or low discipline

C
ry

st
al

51

All slides copyright 2002, Mountain Goat Software

Two rules

Project must use incremental development
Increments cannot exceed four months

Team must hold pre- and post-increment
workshops

Reflect on successes and failures of the
process
Mid-increment workshops encouraged as well

C
ry

st
al

All slides copyright 2002, Mountain Goat Software

Additional characteristics

Only for collocated teams
Different projects need to be run differently

There can never be one process
Use heavier methodologies for larger teams

Fiddling with the process is a Critical Success
Factor
Two most important CSFs:

Communication
Community

C
ry

st
al

52

All slides copyright 2002, Mountain Goat Software

The Crystal family
C

ry
st

al

Essential Money
(E)

Life
(L)

Discretionary Money
(D)

Comfort
(C) C20

D20

E20

L40

C40

D40 D80

E80

C6

D6

E6

L6 L20

E40

C80

L80

Clear Yellow Orange Red

All slides copyright 2002, Mountain Goat Software

Where Cockburn thinks agile works

C
ry

st
al

Essential Money
(E)

Life
(L)

Discretionary Money
(D)

Comfort
(C) C20

D20

E20

L40

C40

D40 D80

E80

C6

D6

E6

L6 L20

E40

C80

L80

Clear Yellow Orange Red

53

All slides copyright 2002, Mountain Goat Software

Techniques and Artifacts
C

ry
st

al

Techniques
Engineering techniques are
undefined

Similar to Scrum
XP techniques can be added in

Artifacts
No specific templates defined
Artifacts suggested but customize
to your own needs

All slides copyright 2002, Mountain Goat Software

Crystal Clear

Targeted at D6
But works up to E8 or D10

One team, one office
Roles

Sponsor
Senior Designer / Programmer
Designer / Programmer
User (possibly part-time)

C
ry

st
al

 C
le

ar

54

All slides copyright 2002, Mountain Goat Software

Software is delivered
incrementally

Progress is measured by
code or major decisions

Automated regression
testing

Some level of user
involvement

Two user demos per
release

Crystal Clear—Policy Standards
C

ry
st

al
 C

le
ar

All slides copyright 2002, Mountain Goat Software

Crystal Clear—Typical Artifacts

Annotated
Use Cases
Or Feature

Descriptions

Design
Sketches or

Notes

Screen
Drafts

Object
Model

Running
Code

Test
Cases

User’s
Manual

C
ry

st
al

 C
le

ar

55

All slides copyright 2002, Mountain Goat Software

Crystal Orange

10-40 people
Project duration of 1-2 years
Time-to-market is critical
Project is not life critical
Desire to communicate with future staff

But while minimizing time and cost of doing so

C
ry

st
al

 O
ra

ng
e

All slides copyright 2002, Mountain Goat Software

Crystal Orange—Roles

Sponsor
Business Expert
Usage expert
Technical facilitator
Business
analyst/designer
Project Manager
Architect
Tester

Design mentor
Lead designer
/programmer
Other designers /
programmers
UI designer
Reuse point
Writer

C
ry

st
al

 O
ra

ng
e

56

All slides copyright 2002, Mountain Goat Software

Crystal Orange—Typical Artifacts

Requirements

UI Designs

Release
Sequence

Common
Object Model

Schedule

Inter-team
Specs

Status
Reports

C
ry

st
al

 O
ra

ng
e

User’s Guide Running
Code Test Cases Migration

Code

All slides copyright 2002, Mountain Goat Software

So how do I “do Crystal?”

Hold a two-day workshop to develop policy
statements for your project
Start with one of the documented variants

Crystal Clear, Orange and Orange-Web
Do 2-4 month increments
Constantly adjust process to be “barely
sufficient”
Reflect at middle and end of each increment

C
ry

st
al

57

All slides copyright 2002, Mountain Goat Software

Testing in Crystal

Product is built in increments (1-4 months)
In general, testing occurs during the
increments

Automated regression testing is emphasized
However, it’s an “embellishment”

Do whatever works for your team & project:
Level of formality / documentation
Amount of ceremony
Timing

C
ry

st
al

All slides copyright 2002, Mountain Goat Software

How agile is Crystal?

MostlyArtifacts are minimized
YesWorking software is primary measure of progress
YesIterative and incremental

Working Software
YesContinuous process refinement
YesScalable
YesUse of minimal planning
YesAbsence of phases
SomewhatAdaptive, empowered, self-organizing teams

Individuals and Interactions

C
ry

st
al

58

All slides copyright 2002, Mountain Goat Software

How agile is Crystal?

YesFrequent inspection

For C and D projects;
less so for E and no
for L

Emergent requirements
Responding to Change

YesAdaptive, empirical customer relationship
YesCustomer involvement throughout

Customer Collaboration

C
ry

st
al

All slides copyright 2002, Mountain Goat Software

DSDM

Dynamic
Systems
Development
Method

59

All slides copyright 2002, Mountain Goat Software

Origins

James Martin’s Rapid
Application Development
book in 1991
DSDM Consortium formed
in 1994

Put out a collection of
best practices that hadn’t
yet been tried together
220 organizations in
Europe

Requirements Planning

User Design

Construction

Cutover

D
SD

M

All slides copyright 2002, Mountain Goat Software

Characteristics

Highly iterative
Strong emphasis on prototyping
Uses timeboxes to control scope
Strong focus on business value

60

All slides copyright 2002, Mountain Goat Software

Current State

DSDM 4.1 is currently released
DSDM 4.2 anticipated November/December
Members “own” the process

Must join the consortium and can then vote

D
SD

M

All slides copyright 2002, Mountain Goat Software

D
SD

M

Avoids the “spiky sofa” curve

Adapted from StapletonTime

U
se

r I
nv

ol
ve

m
en

tPrinciple 1
Active user

involvement is
imperative.

Principles

Source: Dynamic Systems Development
Method, Jennifer Stapleton.

61

All slides copyright 2002, Mountain Goat Software

Principle 2
Teams must be

empowered to make
decisions.

Principle 3
The focus is on frequent

delivery of products.

D
SD

M
Principles

All slides copyright 2002, Mountain Goat Software

D
SD

M

Principles

Principle 4
Fitness for business

purpose is the essential
criterion for acceptance of

deliverables.
Principle 5

Iterative and incremental
development is necessary
to converge on an accurate

business solution.

62

All slides copyright 2002, Mountain Goat Software

D
SD

M
Principles

Principle 6
All changes during
development are

reversible.

Principle 7
Requirements are
baselined at a high

level.

All slides copyright 2002, Mountain Goat Software

Principle 8
Testing is integrated

throughout the lifecycle.

Principle 9
A collaborative and

cooperative approach
between all stakeholders

is essential.

D
SD

M

Principles

63

All slides copyright 2002, Mountain Goat Software

Agree
Schedule

Create
Functional
Prototype

Review
Prototype

Identify
Functional
Prototype

Functional
Model

Iteration

Implement

Review
Business

User Approval &
User Guidelines

Train
UsersImplementation

Identify
Design Prototype

Agree
Schedule

Create Design
Prototype

Review
Design

Prototype

Design &
Build

Iteration

Feasibility
Study

Business
Study

Three pizzas and a cheese
D

SD
M

All slides copyright 2002, Mountain Goat Software

Sequence of phases

Feasibility and Business Study are
done sequentially
Can iterate back and forth through
other phases as desired

D
SD

M

Agree
Schedule

Create
Functional
Prototype

Review
Prototype

Identify
Functional
Prototype

Functional
Model

Iteration

Implement

Review
Business

User Approval &
User Guidelines

Train
UsersImplementation

Identify
Design Prototype

Agree
Schedule

Create Design
Prototype

Review
Design

Prototype

Design &
Build

Iteration

Feasibility
Study

Business
Study

64

All slides copyright 2002, Mountain Goat Software

Feasibility Study

Done to make sure DSDM is
right approach for the project

Is the project urgent?
Is the project UI-intensive?
Are specs incomplete?
Are the users up for it?

Produces
Outline Plan for Development
Prototype, if needed

Feasibility
Study

D
SD

M

All slides copyright 2002, Mountain Goat Software

Business Study

Gain an understanding of
business processes

ER or class diagrams or ?
Uses facilitated workshops to
gain consensus
Identify users who will
participate throughout project
Outline Plan is created

Business
Study

D
SD

M

65

All slides copyright 2002, Mountain Goat Software

Functional Model & Design and Build
Iterations

Repetitive cycles of:
Identify
Agree
Do
Review

Functional Model
Non-production quality code
Analysis artifacts

Design and Build
Production quality code

D
SD

M

Agree
Schedule

Create
Functional
Prototype

Review
Prototype

Identify
Functional
Prototype

Functional
Model

Iteration

Identify
Design Prototype

Agree
Schedule

Create Design
Prototype

Review
Design

Prototype

Design &
Build

Iteration

All slides copyright 2002, Mountain Goat Software

Id
en

tif
y

&
 P

la
n

An idealized timebox

R
ev

ie
w

Id
en

tif
y

&
 P

la
n

R
ev

ie
w

Id
en

tif
y

&
 P

la
n

Investigate

R
ev

ie
w

ConsolidateRefine

Ki
ck

of
f m

ee
tin

g

Ki
ck

of
f m

ee
tin

g

15% 15%70%

D
SD

M

66

All slides copyright 2002, Mountain Goat Software

Timeboxing requires prioritization
MoSCoW Rules

Must have
fundamental to the system

Should have
important requirement with short-term workaround,
would normally be mandatory on a less time-
constrained project

Could have
can be left out of this increment

Want to have but won’t have this time
Would like to have this increment but can wait for a
future increment

D
SD

M

All slides copyright 2002, Mountain Goat Software

Testing during Functional Model
Iterations

Agree
Schedule

Create
Functional
Prototype

Review
Prototype

Identify
Functional
Prototype

Functional
Model

Iteration

Identify
Design Prototype

Agree
Schedule

Create Design
Prototype

Review
Design

Prototype

Design &
Build

Iteration

• Continuous testing
• Items are tested as they are

produced
• Heavy focus on usability testing;

perhaps even with an HF group
• Usually little emphasis on non-

functional aspects

D
SD

M

67

All slides copyright 2002, Mountain Goat Software

Testing during Design & Build
Iterations

Agree
Schedule

Create
Functional
Prototype

Review
Prototype

Identify
Functional
Prototype

Functional
Model

Iteration

Identify
Design Prototype

Agree
Schedule

Create Design
Prototype

Review
Design

Prototype

Design &
Build

Iteration

• Testing continues
• Components are driven to

releasable quality
• Non-functional testing

(scalability, performance, stress,
etc.) occurs

D
SD

M

All slides copyright 2002, Mountain Goat Software

Implementation Phase

D
SD

M

Deployment of actual system into
production environment

Implement

Review
Business

User Approval &
User Guidelines

Train
UsersImplementation

68

All slides copyright 2002, Mountain Goat Software

Agree
Schedule

Create
Functional
Prototype

Review
Prototype

Identify
Functional
Prototype

Functional
Model

Iteration

Implement

Review
Busine

ss

User Approval &
User Guidelines

Train
Users

Implementation

Identify
Design Prototype

Agree
Schedule

Create Design
Prototype

Review
Design

Prototype

Design &
Build

Iteration

Feasibility
Study

Business
Study

At end of Implementation Phase
1. Done
2. New business needs are

discovered
Back to Business Study

3. Low priority work was
skipped

Back to Functional Model
Iteration

4. Non-functional requirement
only partially fulfilled

Back to Design and Build
Iteration

2
3

4

D
SD

M

All slides copyright 2002, Mountain Goat Software

When to use DSDM

Interactive, UI-intensive
Clearly defined user group
Either small projects or projects that can be
made small by decomposing them
Strong time constraints
Requirements can be prioritized
Requirements are not clear or change
frequently

D
SD

M

69

All slides copyright 2002, Mountain Goat Software

Roles in DSDM

Business Roles
Executive Sponsor
Visionary
Facilitator
Scribe

Ambassador User
Advisor UserUser Roles

Technical Coordinator
Team Leader
Developer
Tester

Technical Roles

Project Manager

D
SD

M

All slides copyright 2002, Mountain Goat Software

Development Project

Teams

Project Roles
Project Manager

Technical Coordinator
Visionary

Team Roles
Team Leader

Ambassador User
Developer

Scribe
Tester

End users including
Advisor Users

User Management

Operations

Project Steering
Committee

Executive SponsorSenior Management

D
SD

M

70

All slides copyright 2002, Mountain Goat Software

D
SD

M

Test at all stages to ensure system is fit for
its intended business purpose.Validation

Testing principles

Test in priority order. Test the parts that
deliver key value first.

Benefit-Directed
Testing

Remember that tests are run to find errors.
Build confidence by finding errors then
having them fixed.

Error-Centric
Testing

All slides copyright 2002, Mountain Goat Software

D
SD

M

Test all products throughout all stages.
No “test phase.”
Testing must be planned as an integral
activity.
Testers and users test small parts
iteratively and incrementally.

Test throughout
the lifecycle

Testing principles

Testing should be done by someone other
than the creator.

Independent
testing

Make all tests repeatable.
Some tests become obsolete as
prototypes evolve.
Archive tests with extinct prototypes in
case they come back to life.

Repeatable
testing

71

All slides copyright 2002, Mountain Goat Software

Testing against business goals

Testing is against a hierarchy of business
goals

Not truly against requirements
Each requirement supports one or more
business goals to greater or lesser degree

D
SD

M

All slides copyright 2002, Mountain Goat Software

Risk-based testing

Typical project constraints force testing to be skipped
in some areas

Time is critical so apply test time wisely, not
necessarily evenly

RBT says to plan for this upfront by identifying areas
you can skip or test lightly
Identify – Assess – Plan – Reduce Risk
Done within each timebox so if timebox expires, most
important tests have been performed.
Unit testing performed system-wide

D
SD

M

72

All slides copyright 2002, Mountain Goat Software

Testing

Level of testing formality is reduced
Normally no step-by-step test cases
Instead, a list of test conditions
Predicted results not listed, rely on tester’s
judgment

A final system test (by technical team and
business users) does occur
Use of static code analyzers and dynamic
analysis tools strongly encouraged

e.g., Jtest, BoundsChecker, etc.

D
SD

M

All slides copyright 2002, Mountain Goat Software

How agile is DSDM?

PartiallyArtifacts are minimized
YesWorking software is primary measure of progress
YesIterative and incremental

Working Software
YesContinuous process refinement
SomewhatScalable
PartiallyUse of minimal planning
NoAbsence of phases
PartiallyAdaptive, empowered, self-organizing teams

Individuals and Interactions

D
SD

M

73

All slides copyright 2002, Mountain Goat Software

How agile is DSDM?

YesFrequent inspection
YesEmergent requirements

Responding to Change
YesAdaptive, empirical customer relationship
YesCustomer involvement throughout

Customer Collaboration

D
SD

M

All slides copyright 2002, Mountain Goat Software

Summary

The most agile processes are
XP
Scrum
XBreed
Crystal

Less so
DSDM
FDD

S
um

m
ar

y

74

All slides copyright 2002, Mountain Goat Software

But….

“Being agile” is not necessarily the goal
Delivering working software is the goal

Add your own sub-goals about:
Speed
Quality
Schedule predictability
Fun
Etc.

Essential Money
(E)

Life
(L)

Discretionary Money
(D)

Comfort
(C) C20

D20

E20

L40

C40

D40 D80

E80

C6

D6

E6

L6 L20

E40

C80

L80

Su
m

m
ar

y

All slides copyright 2002, Mountain Goat Software

The Hawthorne Effect

Western Electric Company, 1927-1932
Impact of lighting of productivity:

With more lighting, productivity went up
With less lighting, productivity went up
With the same lighting, productivity went up

“The team gave itself wholeheartedly and
spontaneously to cooperation in the
experiment.”
On important projects, the team owns the
process.

Source: The Social Problems of an
Industrial Civilization, Mayo, 1945.

75

All slides copyright 2002, Mountain Goat Software

Objections to agile

It only works with talented
people

No, but you do need one “level
three” developer
Can a project with no level 3
developers work with ANY
process?

Su
m

m
ar

y

Person learns that there are
multiple techniques.

Person learns to follow
precise directions and get

predictable results.

Skill assimilated and can
move between techniques
without conscious thought.

1

2

3

Source: Agile Software Development,
Alistair Cockburn, p. 14.

All slides copyright 2002, Mountain Goat Software

Objections to agile

It only works on trivial projects
IDX
Caterpillar
We don’t yet know what is possible

It’s not appropriate for all projects
OK, use it when you can

S
um

m
ar

y

76

All slides copyright 2002, Mountain Goat Software

Objections to agile

Agile is hacking
More emphasis on unit testing in XP than any
other process I’ve seen

Most importantly, programmers will do it
Planning is still part of the process

“Don’t confuse more exact with better.”
—Brian Marick

Su
m

m
ar

y

All slides copyright 2002, Mountain Goat Software

What to learn from agile

Communication is key
On-site customer, programmers in shared
space
Communicate in person, not via documents

Rapid feedback
Cut out bureaucracy
“Barely sufficient”
Short increments

1 week to 3 months

77

All slides copyright 2002, Mountain Goat Software

What to learn from agile

Measure progress only by working code
Customize the process
Acknowledge the rapidly decreasing precision
of plans
You Aren’t Gonna Need It (YAGNI)

Programmers won’t need all the architecture
they design
Customers don’t need all the features

Measure success with ROI not KLOC

All slides copyright 2002, Mountain Goat Software

Where to go next?

General
www.agilealliance.com
www.mountaingoatsoftware.com

Crystal
alistair.cockburn.us
Agile Software Development and Surviving
Object-Oriented Projects by Alistair Cockburn

DSDM
na.dsdm.org

Fu
rth

er
 S

ou
rc

es

78

All slides copyright 2002, Mountain Goat Software

Where to go next?

Scrum
www.mountaingoatsoftware.com/scrum
www.controlchaos.com
scrumdevelopment@yahoogroups.com
Agile Software Development with Scrum

Ken Schwaber and Mike Beedle
Testing

agile-testing@yahoogroups.com
www.xptester.org
www.junit.org

Fu
rth

er
 S

ou
rc

es

All slides copyright 2002, Mountain Goat Software

Where to go next?

XP
www.xprogramming.com
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
extremeprogramming@yahoogroups.com
xpdenver@yahoogroups.com
http://www.extremeprogramming.org/
Addison-Wesley’s XP Series of books
A Practical Guide to Extreme Programming by David
Astels, Granville Miller, Miroslav Novak

XBreed
www.xbreed.org

Fu
rth

er
 S

ou
rc

es

79

All slides copyright 2002, Mountain Goat Software

My contact information

Email
mike@mountaingoatsoftware.com

Websites
www.mountaingoatsoftware.com
www.userstories.com

