
Succeeding With Agile:
A Guide to Transitioning

Mike Cohn
December 4, 2007

Mike Cohn - background

© Mountain Goat Software, LLC

1

2

© Mountain Goat Software, LLC

1. Why transitioning to agile is hard
2. A framework for transitioning
3. Leadership’s role
4. Patterns of agile adoption
5. Overcoming resistance

Topics today...

© Mountain Goat Software, LLC

3

4

© Mountain Goat Software, LLC

Change is not top-down or bottom-up;
it’s both

• Two simplistic views of change:

• Top down

• Powerful leader shares a vision

• Bottom-up

• A team starts and everyone else sees the benefits of the
new approach

• But, transitioning to agile is neither top-down
nor bottom-up

• It’s everywhere, all together, all-at-once

© Mountain Goat Software, LLC

• It is tempting to codify things that work in a given
context into best practices

• This leads to inflexible processes†

• Once we know what’s “best” we stop adapting

• Or even thinking about what we’re doing

• Once we’ve stopped inspecting and adapting we’re
not agile, or won’t be for long

Best practices are tempting

†Source: Anderson, P. “Seven Layers for Guiding
the Evolving Enterprise” in The Biology of Business.

5

6

© Mountain Goat Software, LLC

The transition process must be congruent
with the development process

© Mountain Goat Software, LLC

We cannot predict how an organization
will respond to change

• How we traditionally view our organizations:

• Behavior is highly predictable

• Once set in motion, will continue in motion

• An organization change strategy can be
mapped out:

• Do this first, then that, then such and so

• And we’ll end up right where I predict

7

8

© Mountain Goat Software, LLC

“From a very early age, we are taught to break apart
problems, to fragment the world. This apparently
makes complex tasks and subjects more manageable,
but we pay a hidden, enormous price. We can no
longer see the consequences of our actions; we lose
our intrinsic sense of connection to a larger whole.
When we try to ‘see the big picture,’ we try to
reassemble the fragments in our minds, to list and
organize all the pieces. But, as physicist David Bohm
says, the task is futile—similar to trying to reassemble
the pieces of a broken mirror to see a true reflection.
Thus, after awhile we give up trying to see the whole
altogether.”

Peter Senge, The Fifth Discipline

© Mountain Goat Software, LLC

“This machine imagery [Newtonian view]
leads to the belief that studying the parts is
the key to understanding the whole. Things
are taken apart, dissected literally or
figuratively...and then put back together
without any significant loss. The assumption
is that the more we know about the
workings of each piece, the more we will
learn about the whole.”

~Margaret Wheatley
in Leadership and the New Science

9

10

© Mountain Goat Software, LLC

The Newtonian view leads to
thinking of change like this

© Mountain Goat Software, LLC

We need a different mental model
• The organization as a Complex Adaptive

System (CAS)

John Holland in Complexity: The Emerging Science at
the Edge of Order and Chaos by Mitchell Waldrop

• A dynamic network of many agents
• acting in parallel
• acting and reacting to what other agents are doing

• Control is highly dispersed and decentralized
• Overall system behavior is the result of a huge

number of decisions made constantly by many agents

11

12

© Mountain Goat Software, LLC

Differing views of success

Success =
closing the gap with the
desired state

Newtonian view

Success =
achieving a good fit with
the environment

CAS view

© Mountain Goat Software, LLC

Local goals and gaps
• Local agents (individuals, project teams,

discipline coworkers) identify local gaps based
on their local goals

Local
actions

Inspect

Local
actions

Inspect

Local
actions

Inspect

13

14

© Mountain Goat Software, LLC

Traditional
view CAS view

Behavior is predictable and controllable

Behavior is unpredictable and uncontrollable

Direction is determined through emergence
and by many people

Direction is determined by a few leaders.

Every effect is also a cause

Every effect has a cause

• Each paired statement below and on the next slide
describes either the traditional or CAS view of how
to change an organization

• Put an X in the appropriate column to indicate which
describes the traditional view and which the CAS view

Traditional
view CAS view

Behavior is predictable and controllable

Behavior is unpredictable and uncontrollable

Direction is determined through emergence
and by many people

Direction is determined by a few leaders.

Every effect is also a cause

Every effect has a cause

© Mountain Goat Software, LLC

Traditional
view CAS view

Relationships are directive

Relationships are empowering

Responsiveness to the environment is the
measure of value

Efficiency and reliability are measures of value

Decisions are based on facts and data

Decisions are based on patterns and tensions

Leaders are experts and authorities

Leaders are facilitators and supporters

15

16

© Mountain Goat Software, LLC

Discuss these questions
Looking back on the previous two slides, circle the
item in each pair that is most closely aligned with
agile.

Are those views the predominant views in your
organization today?

If not, what problems do you expect to encounter
while transitioning?

© Mountain Goat Software, LLC

17

18

© Mountain Goat Software, LLC

• On projects we learn we cannot precisely anticipate:
• our users’ requirements

• how long it will take to develop a feature or entire
system

• which design will be best

• the set of tasks necessary to develop a feature

• So we devise alternative approaches:

• Rather than ask for upfront specs, we deliver partial
solutions, solicit feedback, and repeat

• Rather than design the whole system, we design
incrementally and adjust based on what we learn

© Mountain Goat Software, LLC

An agile process

Cancel

Gift wrap

Return

Iteration
2-4 weeks

Return

Iteration goal

Iteration
backlog

Potentially shippable
product increment

Product
backlog

Gift wrap

Coupons

Cancel

Daily

...

...

...

Transition
backlog

...

Iteration
monthly

Weekly

Altered
organization

An agile transition process

19

20

© Mountain Goat Software, LLC

Decide how pervasive to go
with agile—development
only or full company

All

Identify which issues agile
can solve or help with. DF

Transition
backlog

• Discuss
progress

• Remove
impediments

© Mountain Goat Software, LLC

Establish a “guiding coalition”

• Acts as the “product owner” or
customer for the transition

• Establishes high-level vision
through the transition backlog

• Remembers, though, that people
will only do what they want to do

Decide how pervasive to go
with agile—development
only or full company

All

Identify which issues agile
can solve or help with. DF

Transition backlog

21

22

© Mountain Goat Software, LLC

• Sponsor—senior person responsible for
success

• Area managers or leads who can make it happen

Guiding coalition members

DBA

QA PMO

UED

© Mountain Goat Software, LLC

Transition teams
• Usually multiple teams pursuing different goals

• Organized around achieving specific goals in the
organization

• e.g., test automation or user experience design

• Some teams in an organization will be organic
• Individuals notice something needs to be achieved

• Others will be formally-sponsored
• Guiding coalition puts someone in charge of achieving a

goal that hasn’t been picked up

• Usually best only if an organic team doesn’t form

23

24

© Mountain Goat Software, LLC

1 each

Guiding
coalition

Transition
teams

Monthly iterations
• Iteration planning to identify

tasks the transition team (and
members of their delivery
teams) can make progress on

• Like the daily standup
• A chance to synchronize

work

Weekly cycle

© Mountain Goat Software, LLC

Transition team members
• Try to form these teams organically

• Possible with a point person to start the team

• True product owner for the team is the guiding
coalition

• But this starting person acts as a combination day-to-
day product owner and ScrumMaster

• Initial membership

• Start with 1-3 members who “get it”

• Ask each of those members to pick 1-2 more

25

26

© Mountain Goat Software, LLC

Transition team member
considerations
• Think about

• Who has the power to make or break the
transition to agile?

• Who controls critical resources or expertise?

• How will each be affected?

• How will each react?

© Mountain Goat Software, LLC

Additional considerations
• Who will gain or lose something by the transition to

agile?

• Are there blocs likely to mobilize against or in
support of the transition?

• Do team members have sufficient credibility that the
teams’ opinions and results are taken seriously?

• Can team members put their personal interests
aside in favor of the organizational goal?

27

28

© Mountain Goat Software, LLC

Who should not be on
these teams
• People with big egos

• Big egos fill the room; leave little space for others

• Don’t understand their own limitations

• Snakes

• Someone who poisons relationships among team
members

• Reluctant participants

• Lack time or enthusiasm

• But may have needed expertise or political clout

© Mountain Goat Software, LLC

Your transition team
1.Who might desperately want the transition to fail?

• Why?
• What might you to be able to do to prevent them from

sabotaging the change?
2.Who might want to be on the transition team who

shouldn’t be on the team?
• Why?

3.What hidden agendas will people bring to the transition
team?
• What can you do to counter (or make use of) those

hidden agendas?
4.What can you do to handle snakes who need to be on

the team?

29

30

© Mountain Goat Software, LLC

© Mountain Goat Software, LLC

Leading an agile transition

• Transition team and other formal leaders must
lead the transition

• but cannot do so in the usual ways

• Self-organizing groups still require leadership

• Lead through example, questions, and focus

• “Nudge” the organization; Poke and prod;

• See how the organization responds

31

32

© Mountain Goat Software, LLC

Pre-requisites of self-organization

• A boundary within which self-organization occurs
• Company, project, team, city, role, nationality

Container

• There must be differences among the agents acting in
our system
• Technical knowledge, domain knowledge, education,

experience, power, gender

Differences

Transforming Exchanges
• Agents in the system interact and exchange resources

• Information, money, energy (vision)

Glenda Eoyang: Conditions for Self-Organizing in Human Systems

© Mountain Goat Software, LLC

Using the CDE model

• When stuck thinking about how to nudge the
organization think of the:
• Containers

• formal teams, informal teams, clarify (or not)
expectations

• Differences

• Dampen or amplify them within or between containers

• Exchanges

• Insert new exchanges, new people, new techniques or
tools

33

34

© Mountain Goat Software, LLC

Containers

• Enlarge or shrink teams

• Enlarge or shrink the responsibility boundary
of teams

• Change team membership

• Create new teams or groups

© Mountain Goat Software, LLC

Differences

• Don’t require consensus

• Creativity comes from tension

• Quiet disagreement is not as good as fierce
debate that leads to behavior change

• Ask hard questions

• Then expect teams to find solutions

35

36

© Mountain Goat Software, LLC

Transforming exchanges

• Encourage communication between teams and
groups

• Who isn’t talking that should?

• Add or remove people from exchanges

• Change reporting relationships

• Relocate people

• Encourage learning

© Mountain Goat Software, LLC

You are the ScrumMaster or project manager...

• The next set of slides describes some teams with
some trouble spots. Think about how you might
help them by changing their Containers, amplifying
or dampening Differences, or changing their
Exchanges.

• For each case, identify at least one thing you’d do.
• Note whether you are tweaking their Container,

Differences, or Exchanges. (You might be affecting
more than one.)

37

38

© Mountain Goat Software, LLC

The team consists of four developers, two testers, a
database engineer and you. The developers and testers
are not working well together. Developers work in
isolation until two days are left in the iteration. They
then throw the code “over the wall” to the testers.

The team is failing to deliver potentially shippable
software at the end of each iteration. None of the
items they start are 100% finished. Their close but
work is always left to be done in the next iteration.

© Mountain Goat Software, LLC

The team seems to be consistently undercommitting
during iteration planning. They finish the work they
commit but it doesn’t seem like much. The product
owner hasn’t complained yet but you’re worried she
will soon.

Your organization has 20 different agile teams. Each
team has its own testers who are starting to go in
different directions in terms of preferred tools and
approaches.

39

40

© Mountain Goat Software, LLC

Jeff, a senior developer, is very domineering. During
iteration planning the team defers to him on every
decision even though he is a horrible estimator. You notice
the glances that other team members exchange when he
suggests very low estimates on some tasks.

You are responsible for two teams. Team members on one
discuss all sides of various issues before making a
decision. This has been working well. On the other team,
discussions drag on endlessly because they pursue
absolute consensus in all cases.

© Mountain Goat Software, LLC

41

42

© Mountain Goat Software, LLC

Two types of patterns
Adoption patterns
• Technical practices first
• Iterative first
• Requirements first
• Start small
• All in
• Stealth mode
• Public display of agility
• Impending doom Expansion patterns

• Split and seed
• Grow and split
• Internal coaching

© Mountain Goat Software, LLC

• The most pressing issues
facing the project are ones
that can be solved with
technical practices.

• You aren’t starting a huge
number of teams at once

• Team members have solid
technical backgrounds

• There is a desperate need to
improve

Useful when

Technical Practices First

• Very rapid improvements are
possible

• The transition can be quick

Advantages

• Technical practices support
each other in subtle ways

• There is likely to be strong
resistance to some
practices

• Outside coaching will likely
be needed

Disadvantages

43

44

© Mountain Goat Software, LLC

• You want to transition more
than a handful of teams
concurrently

• You are starting with a stalled
project

• Lots of different technologies
are in use by various teams

Useful when

Iterative First

• It’s easy to start
• It’s hard to argue against

Advantages

• The team may not choose
to add the technical
practices

Disadvantages

© Mountain Goat Software, LLC

• There is general agreement
on what to build

• You are starting a new
project or restarting a failed
project

• You have the discipline and
skill to do this quickly

Useful when

Requirements First

• Starting with agile
requirements makes it hard
to avoid being agile later

• It makes introducing other
practices easier

Advantages

• You have to wait until the
right project is ready to
start

• Starting the project takes
longer than it should

Disadvantages

45

46

© Mountain Goat Software, LLC

• There is reluctance to
commit fully to agile

• The risks of failing an all-at-
once transition outweigh the
advantages

• You can afford the time it
takes

Useful when

Start Small

• Cost of mistakes is minimized
• You can almost guarantee

success

Advantages

• Conclusions may not be
compelling

• It takes a lot of time
• Agile teams will need to

work with non-agile teams

Disadvantages

© Mountain Goat Software, LLC

• You want to send a clear
message

• Time is critical
• Your team isn’t too small or

too big

Useful when

All In

• It’s over quickly
• There’s no organizational

dissonance from using two
processes at once

• It can reduce some resistance

Advantages

• It’s risky
• It’s costly
• It will likely require a

reorganization

Disadvantages

47

48

© Mountain Goat Software, LLC

• You want to experiment
• You don’t have any

organizational support
• You expect strong resistance

Useful when

Stealth Mode

• There’s no additional pressure
• No one knows about it until

you tell them
• No one can tell you not to do

it

Advantages

• You won’t have any
organizational support

• Skeptics will only hear
about success, they won’t
witness it

Disadvantages

© Mountain Goat Software, LLC

• You are confident in the
approach and committed to
achieving it

• You are likely to face stiff
resistance and want to face it
all at once

Useful when

Public Display of Agility

• Everyone knows you’re doing it
so you’re more likely to stick
with it

• It establishes a vision to work
toward

• Makes a firm statement that you
are committed to transitioning

Advantages

• Announcing something before
you do it can make you look
foolish

• Resistors will come out of the
woodwork

Disadvantages

49

50

© Mountain Goat Software, LLC

• A project is on its way to
failure unless dramatic action
is taken

• Apathy has set in among team
members

Useful when

Impending Doom

• It can shock the team out of
complacency

• Admitting that a project is
headed toward disaster can free
the team to experiment

• It can help overcome a lot of
resistance

• The transition can be quick

Advantages

• It isn’t always an option
• A big change in a time of

trouble can increase stress on
the team

Disadvantages

© Mountain Goat Software, LLC

Discuss these questions:
• Which of these techniques have you used in the

past?
• Was the transition successful?
• If not, would a different pattern have helped?

• What advice would you give to someone about to
use one of these patterns you’ve used in the past?

• What pattern would you prefer to use in the
future? What conditions would you like to be true
for you to use that pattern?

Patterns of agile adoption

51

52

© Mountain Goat Software, LLC

Expansion patterns
Split and Seed

© Mountain Goat Software, LLC

Grow and split

53

54

© Mountain Goat Software, LLC

Internal coaching

• Attend planning meeting
• Attend 2 daily scrums per

week
• Spend 4 hours with the

team per sprint

Give coaches specific
duties such as:

© Mountain Goat Software, LLC

What do you advise?

Read the following case study and
recommend a course of action.

55

56

Copyright 2007, Mountain Goat Software

An Ill-Timed Start?

The cold coffee on his desk did nothing to improve John’s mood. As the vice
president of product development, he knew that today was the day he’d have to make the
call. Should his Cabo project team continue with Scrum or should they go back to their
more sequential process? He’d already stalled a week since some of the Cabo team
members came to him with their concerns. Maybe it had been a bad time to start the
transition but he’d come back from the Certified ScrumMaster class so excited he
couldn’t wait. With version 7.0 “in the can” and entering testing, most of the team would
be freed up to start work on 8.0. All of the testers and a handful of programmers would
need to remain on 7.0 but everyone could get started on 8.0 using Scrum immediately.

SpiffyPricer version 7.0 had been in development for a little over a year, much longer
than the company’s traditional pace of a release per quarter. The development team
seemed to be working as hard as before—harder in fact in many cases—but they just
couldn’t get products released as quickly as before. This was part of what drove John’s
decision to adopt Scrum. A dedicated and conscientious manager, John couldn’t stand to
see his team working more hours and getting less done.

A large enterprise-scale application used by retailers worldwide to monitor and set
prices on all manner of goods, SpiffyPricer had done extremely well in the market during
its short five-year existence. Over 50,000 licenses were currently in use and sales were
continuing to boom. SpiffyPricer’s 200-person team had been divided into nearly thirty
Scrum teams shortly after John returned from CSM training.

“John,” Tonya said, interrupting John’s thoughts. “I got your email saying you
wanted to talk this morning,” she continued, her voice making it a question.

“Yeah, yeah, thanks. Come in.”

Tonya, SpiffyTech’s quality assurance director, had been with the company since the
beginning. She wasn’t a founder but she had been the sixth employee hired. John
sometimes wondered why she continued to work at such a demanding job after she’d
done so well in SpiffyTech’s IPO a few years earlier.

“I’m worried about version 7.”

“Me, too, John. But you know me—I always worry. That’s why I’m in QA. Defect
rates are higher than they were last release at this time. We’re still finding about 35 bugs
a day even after six weeks of testing.”

“I know, Tonya. That’s what has been hurting our initial sprints. I thought most of the
team would be ready to move onto version 8 shortly after we started testing version 7 six
weeks ago. But the programmers keep telling me they aren’t able to make any progress
on version 8 because all their time goes to bugfixing on version 7.”

“We’re going to try to speed things up. Many of the testers are coming in this
weekend.”

“I appreciate their dedication. I wish we didn’t need them to do that, though.”

“There’s only seven weeks left in the schedule. We’ve all been anticipating this.”

Copyright 2007, Mountain Goat Software

“Yeah, but, with Scrum we’re supposed to work at a ‘sustainable pace.’ I don’t think
being in the office for the next seven Saturdays is all that sustainable. What I’m worried
about is that we started Scrum too soon.”

“It’s only been three weeks. You’re not thinking of abandoning it, are you? You
know I’m skeptical and wouldn’t mind dropping it.”

“Well, no, I don’t want to drop it exactly,” John said. “But I’m worried that maybe
we adopted it at the wrong time. I had no idea we’d find so many bugs and that so many
of the programmers would be needed to wrap up version 7. I thought it was mostly
testing at this point.”

Tonya spent the next 20 minutes sharing graphs and trend reports on the defects her
team had found. These did nothing to make John feel any better about the state of the 7.0
release, but he at least knew the release was in good hands with Tonya looking over it.

* * * * *

After a cold lunch at this desk, John walked over to Tyler’s office where he found an
impromptu meeting going on. “Mind if I listen in,” he asked.

Tyler, one of the lead developers on SpiffyPricer, slid an Aeron chair from around his
conference table. The four other programmers in the meeting nodded agreement and John
joined the meeting.

“Rama found a bug in the point-of-sale interface. It’s nasty and we’re trying to figure
out how to fix it without rewriting that whole interface,” Tyler said to John.

“I don’t see a way around, Tyler. Randy’s code is crap. We need to start over,” Kristy
said, continuing the discussion that John’s appearance had interrupted. Randy had left the
company a few months earlier, right before it was discovered that either much of his code
was indeed crap or that he became a convenient scapegoat for many of the 7.0 delays.

“I still think the impact is isolated. The design holds water. I’m sure we don’t need to
rewrite the whole thing.”

“You think that now. What if you get into, spend time trying to avoid rewriting, and
then find you do need to rewrite,” Kristy continued. “That will take even longer. Let’s
just do it now and not in four weeks. The system is stabilizing. The testers are finding
fewer bugs than they were.”

“We might have time to rewrite if we didn’t spend time in those daily scrum
meetings. That half hour a day adds up,” Shannon joked as all eyes turned cautiously
toward John. The disdain for the daily scrum meetings was well-known, but everyone
had also heard John’s message that stopping the meetings was not an option.

“Why are the meetings taking a half hour, Shannon? They’ll only supposed to be
fifteen minutes,” John asked.

“Oh they take at least a half hour. I get interrupted from what I’m doing. I go to the
meeting and Tom, our ScrumMaster, has us give an update on 7.0 bugfixing. Each of us
do that. Then we do an 8.0 daily meeting where we go around the room again. That part
is quick because hardly any of us get time on a given day to work on 8.0. So we go
around the room and each say ‘No progress.’ Then I need to walk back to my desk, get

Copyright 2007, Mountain Goat Software

my mind back into what I was doing before the meeting. It just adds up. If Tom wants to
know where I’m at, he can look in Bugzilla. Everything is up to date—as soon as I fix a
bug I mark it as fixed. No one asks any questions in those meetings. It’s pretty clear
they’re just for Tom.”

“I think I’ll watch your meeting tomorrow. Thanks for being honest.”

As the discussion of how to fix the point-of-sale interface bugs continued John found
he was no longer paying attention to the meeting. He knew Scrum was the right direction
for the company. In the three weeks since they’d begun he’d already noticed some
encouraging changes. So while he knew that Scrum was the right thing to do, he didn’t
know if it was the right thing to do now. What he did know he had to do now was meet
with Carlos, the CEO, and let him know what he’d decided.

What should John do in this situation?

© Mountain Goat Software, LLC

© Mountain Goat Software, LLC

Overcoming resistance
• Sell the problem, not the solution

• No one wants a solution to a problem they don’t (think
they) have

• Be open to hearing better solutions than you have

• Communicate why the change and why now

• Put team members in touch with customers

• Let them hear the problems you are hearing

• Emphasize benefits of the change

• Help resisters find new roles

57

58

© Mountain Goat Software, LLC

Engage the change agents

Change agents...
• help others see problems and address them
• articulate the need for a change
• are accepted as trustworthy and competent
• can see and diagnose problems
• motivate people to change
• work through others to translate intent into

action

© Mountain Goat Software, LLC

Identifying change agents

• Find out who people listen to

• These may not be people with formal authority

• Look for people who think differently

• Change agents aren’t satisfied with the status quo

• Consider new employees or others who may
not be infected with a common mindset yet

• Consider people with different backgrounds

• The programmer with the art history degree

59

60

© Mountain Goat Software, LLC

• Generally deliberate, disciplined
and organized

• Prefer change that maintains
current structure

• Enjoy predictability
• May appear cautious
• Focus on details and routine

Conservers
• May appear unorganized,

undisciplined, unconventional
• Prefer change that challenges

the current structure
• Will challenge assumptions
• Enjoy risk and uncertainty
• Little regard for policies

Originators

• Map appear practical, agreeable, and flexible
• Prefer changes that emphasizes workable

outcomes
• More focused on results than structure
• Open to both sides of an argument
• Operate as mediators
• Appear more team oriented

Pragmatists

From: Harvard Business
Essentials: Managing
Change and Transition

© Mountain Goat Software, LLC

Extent to which people agree on cause and effect
No consensus Broad consensus

Ex
te

nt
 t

o
w

hi
ch

 p
eo

pl
e

ag
re

e
on

 w
ha

t
th

ey
 w

an
t

N
o

co
ns

en
su

s
Br

oa
d

co
ns

en
su

s

“Tools of Cooperation and Change,” Christensen et al., Oct. 2006.

61

62

© Mountain Goat Software, LLC

Extent to which people agree on cause and effect
No consensus Broad consensus

N
o

co
ns

en
su

s
Br

oa
d

co
ns

en
su

s

Ex
te

nt
 t

o
w

hi
ch

 p
eo

pl
e

ag
re

e
on

 w
ha

t
th

ey
 w

an
t

© Mountain Goat Software, LLC

Extent to which people agree on cause and effect
No consensus Broad consensus

N
o

co
ns

en
su

s
Br

oa
d

co
ns

en
su

s

• Charisma

• Salesmanship
• Role modeling

• Vision

• Negotiation

• Fiat

• Coercion
• Threats

• Role Definition

• Folklore

• Ritual

• Tradition

• Religion

• Democracy

• Apprenticeship
• Strategic planning

• Financial
incentives
• Hiring &

promotion

• Training
• Standards

• Metrics
programs

Ex
te

nt
 t

o
w

hi
ch

 p
eo

pl
e

ag
re

e
on

 w
ha

t
th

ey
 w

an
t

63

64

© Mountain Goat Software, LLC

Upcoming public classes

© Mountain Goat Software, LLC

Mike Cohn contact info

65

66

